Problem Set 4 for Math 502, March 29, 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

March 29, 2013

1. Let $(\Omega, \mathcal{S}, \mu)$ be a measure space, and let $1<p<\infty$. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in $L^{p}(\mu)$. Suppose that

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

exists for almost every $x \in \Omega$. Show that $f \in L^{p}(\mu)$, and that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges weakly to f in $L^{p}(\mu)$.
2. Let $(\Omega, \mathcal{S}, \mu)$ be a σ-finite measure space such that $L^{2}(\mu)$ is separable. Let $\{u\}_{n \in \mathbb{N}}$ be an orthonormal basis for $L^{2}(\mu)$.
(a) Show that $\left\{u_{m}(x) u_{m}(y)\right\}_{m, n \in \mathbb{N}}$ is an orthonormal basis for $L^{2}(\Omega \times \Omega, \mathcal{S} \otimes S, \mu \times \mu)$. (This comes down to showing that if $K \in L^{2}(\Omega \times \Omega, \mathcal{S} \otimes S, \mu \times \mu)$ and

$$
\int_{\Omega \times \Omega} K(x, y) u_{m}(x) u_{n}(y) \mathrm{d} \mu(x) \mathrm{d} \mu(y)=0
$$

for all m, n, then $K=0$.)
(b) Let $K \in L^{2}(\Omega \times \Omega, \mathcal{S} \otimes S, \mu \times \mu)$. Define the numbers $\left\{a_{m, n}\right\}_{m, n \in \mathbb{N}}$ by

$$
a_{m, n}=\int_{\omega \times \Omega} K(x, y) u_{m}(x) u_{n}(y) \mathrm{d} \mu \times \mathrm{d} \mu .
$$

For $N \in \mathbb{N}$, define the function K_{N} by

$$
K_{N}(x, y)=\sum_{m, n=1}^{N} a_{m, n} u_{m}(x) u_{n}(y) .
$$

Show that for $\epsilon>0$, there exists an N_{ϵ} so that

$$
\left\|K-K_{N_{\epsilon}}\right\|_{2}<\epsilon
$$

where the norm is the $L^{2}(\mu \times \mu)$ norm.
3. Continue with the notation from the previous problem:
(a) Define the linear operator K on $L^{2}(\mu)$ by

$$
K f(x)=\int_{\Omega} K(x, y) f(y) \mathrm{d} \mu
$$

[^0]Show that K is continuous from $L^{2}(\mu)$ to $L^{2}(\mu)$ (in the norm topology). Define K_{N} in the analogous manner, and show that it, too, is continuous in the norm topology.
(b) Let $\left\{f_{j}\right\}$ be a weakly convergent sequence in $L^{2}(\mu)$. Show that for each $N,\left\{K_{N} f_{j}\right\}_{j \in \mathbb{N}}$ is a strongly convergent sequence in $L^{2}(\mu)$. Use this, and the above results, to show that also $\left\{K f_{j}\right\}_{j \in \mathbb{N}}$ is a strongly convergent sequence in $L^{2}(\mu)$.
4. Continue with the notation from the previous problem:
(a) Show that there is a unit vector $f_{1} \in L^{2}(\mu)$ such that

$$
\|K f\|_{2} \leq\left\|f_{1}\right\|_{2}
$$

for all f with $\|f\|_{2} \leq 1$. That is, there is a unit vector f_{1} such that

$$
\left\|K f_{1}\right\|_{2}=\|K\|
$$

where the norm on the right is the norm of K as an operator from $L^{2}(\mu)$ to $L^{2}(\mu)$.
(b) Let $\omega=[0,1]$, and let μ be Lebesgue measure. Consider the operator M on $L^{2}(\mu)$ define by $M f(x)=x f(x)$. Show that M is continuous in the norm topology, but there is no unit vector f in $L^{2}(\mu)$ such that

$$
\|M f\|_{2}=\|M\| .
$$

[^0]: ${ }^{1}$ © 2013 by the author.

