Homework Set 3, Math 502 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

February 22, 2013

These exercises are due Wednesday, March 6.

1. Let μ be Lebesgue measure on \mathbb{R}^{n}. Let $f \in L^{p}(\mu), 1 \leq p<\infty$. Let $\epsilon>0$.
(a) Show that there exists a compact set $K \subset \mathbb{R}^{n}$ and a continuous function g supported on K such that $\|f-g\|_{p}<\epsilon / 2$.
(b) Using the Stone-Wierstrass Theorem, show that there is a polynomial h in x_{1}, \ldots, x_{n} with rational coefficients such that

$$
\left(\int_{K}|h(x)-g(x)|^{p} \mathrm{~d} \mu\right)^{1 / p}<\epsilon / 2 .
$$

(c) Show that $L^{p}(\mu), 1 \leq p<\infty$ is separable; i.e., that there exists a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ that is dense in $L^{p}(\mu)$.
(d) $L^{\infty}(\mu)$ to be the set of (equivalence classes of) measurable functions f on \mathbb{R}^{n} such that for some $a<\infty, \mu(\{x:|f(x)|>a\})=0$. Define $\|f\|_{\infty}$ to be the infimum of all such a. Show that $\|\cdot\|_{\infty}$ is a norm, and that equipped with this norm, $L^{\infty}(\mu)$ is a complete metric space, but that it is not separable.

For the next problem, recall the reverse Hölder inequality:
0.1 LEMMA. Let $0<r<1$ and let $s=r /(r-1)<0$. Then for all n and all $a_{j} \geq 0, b_{j}>0$, $i=j, \ldots, n$,

$$
\begin{equation*}
\sum_{j=1}^{n} a_{j} b_{j} \geq\left(\sum_{j=1}^{n} a_{j}^{r}\right)^{1 / r}\left(\sum_{j=1}^{n} b_{j}^{s}\right)^{1 / s} \tag{0.1}
\end{equation*}
$$

2. Let (X, \mathcal{F}, μ) be a measure space, and for $1<p \leq 2$.
(a) Let $f, g \in L^{p}(\mu)$ with $f \neq g$. Suppose first that f and g are simple functions of the form

$$
f(x)=\sum_{j=1}^{N} w_{j} 1_{A_{j}}(x) \quad \text { and } \quad g(x)=\sum_{j=1}^{N} z_{j} 1_{A_{j}}(x)
$$

where each $w_{j}, z_{j} \in \mathbb{C}$, each $A-j$ is measurable, and $w_{j} z_{j}^{*}$ is not real for any j. (Here 1_{A} is the indicator function of A.) Show, using the lemma, that

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\|f+t g\|_{p}^{2} \geq 2(p-1)\|g\|_{p}^{2}
$$

[^0](b) Let $\psi(t)$ be a real valued function on \mathbb{R} such that $\psi^{\prime \prime}(t) \geq 2 c$, where the primes denote derivatives, and $c \in \mathbb{R}$. Define φ by
$$
\varphi(t)=\psi(t)+c t(1-t) .
$$

Show that φ is convex, and that $\varphi(0)=\psi(0)$ and $\varphi(1)=\psi(1)$. Show also that

$$
\psi(1 / 2)+c / 4 \leq \frac{\psi(0)+\psi(1)}{2} .
$$

(c) Combine parts (a) and (b) to show that

$$
\|f+g / 2\|_{p}^{2}+\frac{(p-1)}{4}\|g\|_{p}^{2} \leq \frac{\|f\|_{p}^{2}+\|f+g\|_{p}^{2}}{2} .
$$

(d) Remove the simple-function approximation to show that for all unit vectors $\left.u, v i n L^{(} \mu\right)$,

$$
\left\|\frac{u+v}{2}\right\|_{p}^{2}+(p-1)\left\|\frac{u-v}{2}\right\|_{p}^{2} \leq 1 .
$$

[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

