Homework Set 3, Math 502 Spring 2013

Eric A. Carlen¹ Rutgers University

February 22, 2013

These exercises are due Wednesday, March 6.

- **1.** Let μ be Lebesgue measure on \mathbb{R}^n . Let $f \in L^p(\mu)$, $1 \le p < \infty$. Let $\epsilon > 0$.
- (a) Show that there exists a compact set $K \subset \mathbb{R}^n$ and a continuous function g supported on K such that $||f g||_p < \epsilon/2$.
- (b) Using the Stone-Wierstrass Theorem, show that there is a polynomial h in x_1, \ldots, x_n with rational coefficients such that

$$\left(\int_K |h(x) - g(x)|^p d\mu\right)^{1/p} < \epsilon/2.$$

- (c) Show that $L^p(\mu)$, $1 \leq p < \infty$ is *separable*; i.e., that there exists a sequence $\{f_n\}_{n \in \mathbb{N}}$ that is dense in $L^p(\mu)$.
- (d) $L^{\infty}(\mu)$ to be the set of (equivalence classes of) measurable functions f on \mathbb{R}^n such that for some $a < \infty$, $\mu(\{x : |f(x)| > a\}) = 0$. Define $||f||_{\infty}$ to be the infimum of all such a. Show that $||\cdot||_{\infty}$ is a norm, and that equipped with this norm, $L^{\infty}(\mu)$ is a complete metric space, but that it is not separable.

For the next problem, recall the reverse Hölder inequality:

0.1 LEMMA. Let 0 < r < 1 and let s = r/(r-1) < 0. Then for all n and all $a_j \ge 0$, $b_j > 0$, i = j, ..., n,

$$\sum_{j=1}^{n} a_j b_j \ge \left(\sum_{j=1}^{n} a_j^r\right)^{1/r} \left(\sum_{j=1}^{n} b_j^s\right)^{1/s} \tag{0.1}$$

- **2.** Let (X, \mathcal{F}, μ) be a measure space, and for 1 .
- (a) Let $f, g \in L^p(\mu)$ with $f \neq g$. Suppose first that f and g are simple functions of the form

$$f(x) = \sum_{j=1}^{N} w_j 1_{A_j}(x)$$
 and $g(x) = \sum_{j=1}^{N} z_j 1_{A_j}(x)$

where each $w_j, z_j \in \mathbb{C}$, each A - j is measurable, and $w_j z_j^*$ is not real for any j. (Here 1_A is the indicator function of A.) Show, using the lemma, that

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2} \|f + tg\|_p^2 \ge 2(p-1) \|g\|_p^2.$$

¹© 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

(b) Let $\psi(t)$ be a real valued function on \mathbb{R} such that $\psi''(t) \geq 2c$, where the primes denote derivatives, and $c \in \mathbb{R}$. Define φ by

$$\varphi(t) = \psi(t) + ct(1-t) .$$

Show that φ is convex, and that $\varphi(0) = \psi(0)$ and $\varphi(1) = \psi(1)$. Show also that

$$\psi(1/2) + c/4 \le \frac{\psi(0) + \psi(1)}{2}$$
.

(c) Combine parts (a) and (b) to show that

$$||f + g/2||_p^2 + \frac{(p-1)}{4} ||g||_p^2 \le \frac{||f||_p^2 + ||f + g||_p^2}{2}.$$

(d) Remove the simple-function approximation to show that for all unit vectors $u, v \ in L^{(\mu)}$,

$$\left\| \frac{u+v}{2} \right\|_{p}^{2} + (p-1) \left\| \frac{u-v}{2} \right\|_{p}^{2} \le 1$$
.