Homework Set 2, Math 502 Spring 2013

Eric A. Carlen ${ }^{1}$
Rutgers University

February 9, 2013

These exercises are due Monday, Feb 18.

1. Let μ denote Lebesgue measure on \mathbb{R}^{n}. For $f i n L^{p}(\mu)$, and $y \in \mathbb{R}^{n}$, define $\tau_{y} f$ by

$$
\tau_{y} f(x)=f(x-y) .
$$

Prove that

$$
\lim _{y \rightarrow 0}\left\|\tau_{y} f-f\right\|_{p}=0
$$

for all $f \in L^{p}(\mu)$.
2. Let (X, \mathcal{F}, μ) be a measure space, and for $1 \leq p<\infty$ define $C \subset L^{p}(\mu)$ by

$$
C:=\left\{f \in L^{p}(\mu): 0 \leq f(x) \leq 1 \quad \text { a.e. }\right\} .
$$

For which values of p, if any, is C closed in the L^{p} norm topology? Justify your answer.
3. Let (X, \mathcal{F}, μ) be a measure space, and let $1 \leq p<q<r \leq \infty$. Suppose that $f \in L^{p}$ and $f \in L^{r}$. Then, as show in Propositon 6.10 in Folland, $f \in L^{q}$, and $\|f\|_{q}$ is bounded above by a certain geometric mean of $\|f\|_{p}$ and $\|f\|_{r}$. What about a lower bound? Show that for all $\epsilon>0$ and all $q \in(p, r)$, there exists an f with $\|f\|_{p}=\|f\|_{r}=1$ and $\|f\|_{q}<\epsilon$.
4. Let (X, \mathcal{F}, μ) be a measure space, and let $1 \leq p<q<r \leq \infty$. Suppose that $f \in L^{p}$ and $f \in L^{r}$. Then, as show in Propositon 6.10 in Folland, $f \in L^{q}$. As the exercise above shows, there is in general now lower bound on $\|f\|_{q}$ given $\|f\|_{p}$ and $\|f\|_{r}$. However, if we have such a lower bound on $\|f\|_{q}$, then this implies a point wise lower bound on $|f|$ on a sizable set. More precisely, fix $\epsilon>0$ and define

$$
A_{\epsilon}=\{x:|f(x)|>\epsilon\} .
$$

Show that

$$
\|f\|_{q}^{q} \leq \epsilon^{q-p}\|f\|_{p}^{p}+\left(\mu\left(A_{\epsilon}\right)\right)^{(r-q) / r}\|f\|_{r}^{q}
$$

and hence,

$$
\epsilon^{q-p}<\frac{1}{2} \frac{\|f\|_{q}^{q}}{\|f\|_{p}^{p}} \quad \Rightarrow \quad \mu\left(A_{\epsilon}\right) \geq\left(\frac{\|f\|_{q}}{\|f\|_{r}}\right)^{q r /(r-q)}
$$

Finally, show that for each $\delta>0$, there exists an $f \in L^{p} \cap L^{r}$ with $\|f\|_{p}=\|f\|_{r}=1$ and

$$
\mu\left(A_{\epsilon}\right)<\delta,
$$

[^0]so that the lower bound on $\|f\|_{q}$ with " q in the middle" was essential for having a lower bound on $\mu\left(A_{\epsilon}\right)$.
5. For $1<p<\infty$, let $q=p /(p-1)$. Suppose $\left\{f_{n}\right\}$ is a sequence of unit vectors in L^{p} on some measure space (X, \mathcal{F}, μ). Suppose that g is a unit vector in L^{q} for the same measure space. Finally, suppose that both f and g are non-negative.

Show that if

$$
\lim _{n \rightarrow \infty} \int_{X} f_{n} g \mathrm{~d} \mu=1
$$

then

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-g^{p-1}\right\|_{p}=0
$$

Is this true for $p=1$ or $p=\infty$? What can you say if we drop the requirement that f and g be non-negative?

[^0]: ${ }^{1}$ (c) 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

