Homework Set 2, Math 502 Spring 2013

Eric A. Carlen¹ Rutgers University

February 9, 2013

These exercises are due Monday, Feb 18.

1. Let μ denote Lebesgue measure on \mathbb{R}^n . For f in $L^p(\mu)$, and $y \in \mathbb{R}^n$, define $\tau_y f$ by

$$\tau_y f(x) = f(x - y) .$$

Prove that

$$\lim_{y \to 0} \|\tau_y f - f\|_p = 0$$

for all $f \in L^p(\mu)$.

2. Let (X, \mathcal{F}, μ) be a measure space, and for $1 \leq p < \infty$ define $C \subset L^p(\mu)$ by

$$C := \{ f \in L^p(\mu) : 0 \le f(x) \le 1 \quad a.e. \}.$$

For which values of p, if any, is C closed in the L^p norm topology? Justify your answer.

- **3.** Let (X, \mathcal{F}, μ) be a measure space, and let $1 \leq p < q < r \leq \infty$. Suppose that $f \in L^p$ and $f \in L^r$. Then, as show in Proposition 6.10 in Folland, $f \in L^q$, and $||f||_q$ is bounded above by a certain geometric mean of $||f||_p$ and $||f||_r$. What about a lower bound? Show that for all $\epsilon > 0$ and all $q \in (p, r)$, there exists an f with $||f||_p = ||f||_r = 1$ and $||f||_q < \epsilon$.
- **4.** Let (X, \mathcal{F}, μ) be a measure space, and let $1 \leq p < q < r \leq \infty$. Suppose that $f \in L^p$ and $f \in L^r$. Then, as show in Proposition 6.10 in Folland, $f \in L^q$. As the exercise above shows, there is in general now lower bound on $||f||_q$ given $||f||_p$ and $||f||_r$. However, if we have such a lower bound on $||f||_q$, then this implies a *point wise* lower bound on $||f||_q$ on a sizable set. More precisely, fix $\epsilon > 0$ and define

$$A_{\epsilon} = \{ x : |f(x)| > \epsilon \}.$$

Show that

$$||f||_q^q \le \epsilon^{q-p} ||f||_p^p + (\mu(A_{\epsilon}))^{(r-q)/r} ||f||_r^q$$

and hence,

$$\epsilon^{q-p} < \frac{1}{2} \frac{\|f\|_q^q}{\|f\|_p^p} \quad \Rightarrow \quad \mu(A_\epsilon) \ge \left(\frac{\|f\|_q}{\|f\|_r}\right)^{qr/(r-q)}.$$

Finally, show that for each $\delta > 0$, there exists an $f \in L^p \cap L^r$ with $||f||_p = ||f||_r = 1$ and

$$\mu(A_{\epsilon}) < \delta$$
,

¹© 2013 by the author. This article may be reproduced, in its entirety, for non-commercial purposes.

so that the lower bound on $||f||_q$ with "q in the middle" was essential for having a lower bound on $\mu(A_{\epsilon})$.

5. For 1 , let <math>q = p/(p-1). Suppose $\{f_n\}$ is a sequence of unit vectors in L^p on some measure space (X, \mathcal{F}, μ) . Suppose that g is a unit vector in L^q for the same measure space. Finally, suppose that both f and g are non-negative.

Show that if

$$\lim_{n \to \infty} \int_X f_n g \mathrm{d}\mu = 1 ,$$

then

$$\lim_{n \to \infty} ||f_n - g^{p-1}||_p = 0.$$

Is this true for p = 1 or $p = \infty$? What can you say if we drop the requirement that f and g be non-negative?