Take Home Final Exam for Math 502

Eric A. Carlen¹ Rutgers University

May 7, 2013

- 1. Recall the Projection Lemma, which says that in a uniformly convex Banach space, every closed convex set contains a unique element of minimal norm. The first two parts of this problem concerns what can go wrong if uniform convexity is not present.
- (a) Let \mathcal{C} be the space of continuous functions on [0,1] equipped with the uniform norm. Let

$$K = \left\{ f \in \mathcal{C} : \int_0^{1/2} f(t) dt - \int_{1/2}^1 f(t) dt = 1 \right\}.$$

Show that K is closed and convex, but contains no element of minimal norm.

(b) Let μ be Lebesgue measure on [0,1], and let

$$K = \left\{ f \in L^1(\mu) : \int_{[0,1]} f d\mu = 1 \right\}.$$

Show that K is closed and convex, but contains infinitely many elements of minimal norm.

(c) Let μ be Lebesgue measure on \mathbb{R} . Let $1 . As in Problem 4 on page 196 of Folland, define, the norm <math>\|\cdot\|$ on $L^p(\mu) + L^q(\mu)$ by

$$||f|| = \inf \{ ||g||_p + ||h||_q : f = g + h, g \in L^p(\mu), h \in L^q(\mu) \}$$
.

Is $L^p(\mu) + L^q(\mu)$ uniformly convex in this norm?

- **2.** (a) Let L be a bounded linear functional on a subspace \mathcal{V} of some Hilbert space \mathcal{H} . Prove that L has a *unique* norm preserving extension from \mathcal{V} to all of \mathcal{H} , and that this extension is zero on \mathcal{V}^{\perp} , the subspace of \mathcal{H} that is orthogonal to \mathcal{V} .
- (b) Construct a linear functional L on some subspace of $L^1(\mu)$ that has infinitely many norm preserving extensions to $L^1(\mu)$.
- **3.** Let \mathcal{C} be the space of continuous real valued functions on [0,1] with the uniform norm. For $n \in \mathbb{N}$, define X_n to be the subset of \mathcal{C} consisting of functions f such that for *some* $t \in [0,1]$,

$$|f(t) - f(s)| \le n|t - s|$$

for all $s \in [0, 1]$.

 $^{^{1}}$ © 2013 by the author.

- (a) Show that for each fixed n, each open set in \mathcal{C} contains an open set that does not intersect X_n .
- (b) Show that this implies the existence of a dense G_{δ} (countable intersection of open sets) consisting entirely of nowhere differentiable functions.
- **4.** Let μ and ν be finite Radon measures on \mathbb{R}^n . For $f \in \mathcal{C}_c(\mathbb{R}^n)$, define

$$L(f) = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(x+y) d\mu(x) d\nu(y) .$$

(a) Show that there is a finite Radon measure λ on \mathbb{R}^n so that

$$L(f) \int_{\mathbb{R}^n} f(x) d\lambda(x)$$

for all $f \in \mathcal{C}_c(\mathbb{R}^n)$.

(b) Show that if μ and ν are absolutely continuous with respect to Lebesgue measure, so is λ , and give a formula for the Radon-Nikodym derivative of λ with respect to Lebesgue measure in terms of those for μ and ν .