Question 1

Let $\mathbb{Z}_{3}[i]=\left\{a+b i: a, b \in \mathbb{Z}_{3}\right\}$, with addition and multiplication like in the complex numbers but reduced modulo 3. In particular, i^{2} is the class of 2 in \mathbb{Z}_{3}. You may assume that $\mathbb{Z}_{3}[i]$ is a ring under these operations.
(a) Observe that $\mathbb{Z}_{3}[i]$ has nine elements. Prove that $\mathbb{Z}_{3}[i]$ is not isomorphic to \mathbb{Z}_{9}. (Hint: if $f: \mathbb{Z}_{9} \rightarrow$ $\mathbb{Z}_{3}[i]$ is an homomorphism, consider $\left.f(1)\right)$.
(b) Show that the map $N: \mathbb{Z}_{3}[i] \rightarrow \mathbb{Z}_{3}$ given by $N(a+b i)=a^{2}+b^{2}$ is well-defined. What is the preimage $N^{-1}(0)$?
(c) Show that $N(x y)=N(x) N(y)$ for all $x, y \in \mathbb{Z}_{3}[i]$. Is N a ring homomorphism?
(d) Find a characterization of invertibility of $x \in \mathbb{Z}_{3}[i]$ in terms of $N(x)$. Prove your characterizaton.
(e) Show that $\mathbb{Z}_{3}[i]$ is a field.

Now you know a finite field which is not one of the \mathbb{Z}_{p}. We will see that there is exactly one finite field for every prime power order.

