Question 1
A Euclidean domain is an integral domain R which admits a function $d: R-\{0\} \rightarrow \mathbb{N}$ such that:

1. For all nonzero $a, b \in R, d(a) \leq d(a b)$
2. For all $a, b \in R$ with $b \neq 0$, there exist elements $q, r \in R$ satisfying $a=q b+r$ and either $r=0$ or $d(r)<d(b)$

We have seen that \mathbb{Z} is a Euclidean domain with $d(n)=|n|$, and $F[x]$ is one with $d(f(x))=\operatorname{deg}(f)$.
Recall that for an arbitrary ring R, we say that a nonzero, nonunit $p \in R$ is irreducible if its only divisors are the units and its associates. We say that R is a unique factorization domain (UFD) if every nonzero $a \in R$ admits a unique (up to units) factorization into irreducibles.

For this workshop, fix a Euclidean domain R with associated Euclidean function d.
(a) Given a nonzero, nonunit element $b \in R$, prove that $d(a)<d(a b)$ for every nonzero $a \in R$.
(b) Given nonzero $a, b \in R$, set $I=I_{a, b}=\{a x+b y \mid x, y \in R\}$ (the set of R-linear combinations of a and b). Prove that I is nonempty, and moreover contains elements other than 0 .
(c) Choose $c \in I$ minimizing the function d. Show that any common divisor d of a and b must also divide c. (We call c a GCD of a and b. It is unique up to multiplication by a unit).
(d) Show that if $p \in R$ is irreducible, and p divides the product $a b$, then p divides a or p divides b. Here's an outline of how the proof should go:

1. Suppose p does not divide a. Let c be a GCD of p and a (see part c)). Conclude from c) that c divides p.
2. Write $p=c k$. Use the irreduciblity of p to show that one of c, k must be a unit. Then use the assumption that p doesn't divide a to show that c must be the unit.
3. Show that $1 \in I_{a, p}$.
4. Show that p divides b.
(e) Show that R is a UFD. Hence all Euclidean domains are also UFDs.
