Question 1
A *Euclidean domain* is an integral domain \(R \) which admits a function \(d : R - \{0\} \to \mathbb{N} \) such that:

1. For all nonzero \(a, b \in R \), \(d(a) \leq d(ab) \)
2. For all \(a, b \in R \) with \(b \neq 0 \), there exist elements \(q, r \in R \) satisfying \(a = qb + r \) and either \(r = 0 \) or \(d(r) < d(b) \)

We have seen that \(\mathbb{Z} \) is a Euclidean domain with \(d(n) = |n| \), and \(F[x] \) is one with \(d(f(x)) = \deg(f) \).

Recall that for an arbitrary ring \(R \), we say that a nonzero, nonunit \(p \in R \) is *irreducible* if its only divisors are the units and its associates. We say that \(R \) is a unique factorization domain (UFD) if every nonzero \(a \in R \) admits a unique (up to units) factorization into irreducibles.

For this workshop, fix a Euclidean domain \(R \) with associated Euclidean function \(d \).

(a) Given a nonzero, nonunit element \(b \in R \), prove that \(d(a) < d(ab) \) for every nonzero \(a \in R \).

(b) Given nonzero \(a, b \in R \), set \(I = I_{a,b} = \{ax + by | x, y \in R \} \) (the set of \(R \)-linear combinations of \(a \) and \(b \)). Prove that \(I \) is nonempty, and moreover contains elements other than 0.

(c) Choose \(c \in I \) minimizing the function \(d \). Show that any common divisor \(d \) of \(a \) and \(b \) must also divide \(c \). (We call \(c \) a GCD of \(a \) and \(b \). It is unique up to multiplication by a unit).

(d) Show that if \(p \in R \) is irreducible, and \(p \) divides the product \(ab \), then \(p \) divides \(a \) or \(p \) divides \(b \).

Here’s an outline of how the proof should go:

1. Suppose \(p \) does not divide \(a \). Let \(c \) be a GCD of \(p \) and \(a \) (see part c)). Conclude from c) that \(c \) divides \(p \).
2. Write \(p = ck \). Use the irreducibility of \(p \) to show that one of \(c, k \) must be a unit. Then use the assumption that \(p \) doesn’t divide \(a \) to show that \(c \) must be the unit.
3. Show that \(1 \in I_{a,p} \).
4. Show that \(p \) divides \(b \).

(e) Show that \(R \) is a UFD. Hence all Euclidean domains are also UFDs.