Question 1
Let $p$ be a prime and let $\mathbb{Z}_{(p)}$ be the subset of the rational numbers consisting of the numbers $a / b$ such that $p$ does not divide $b$. These are the $p$-local integers.
(a) Show that $\mathbb{Z}_{(p)}$ is a subring of $\mathbb{Q}$.
(b) Let $a / b \in \mathbb{Z}_{(p)}$. Show that $a / b$ is a unit iff $p$ does not divide $a$.
(c) Show that every element $r \in \mathbb{Z}_{(p)}$ determines an unique unit $u \in \mathbb{Z}_{(p)}$ and a unique natural number $n$ such that $r=u p^{n}$.
(d) Show that every element $q \in \mathbb{Q}$ determines an unique unit $u \in \mathbb{Z}_{(p)}$ and a unique integer $n$ such that $q=u p^{n}$.
(e) Find a surjective ring homomorphism $\pi: \mathbb{Z}_{(p)} \rightarrow \mathbb{Z}_{p}$. Make sure to show that it is well-defined.

