Question 1
An automorphism of a group G is an isomorphism from G to itself. Denote the set of automorphisms of G by $\operatorname{Aut}(G)$.
(a) Given $x \in G$, define a map $c_{x}: G \rightarrow G$ by $c_{x}(g)=x^{-1} g x$. Prove that this is an automorphism of G. (We call these inner isomorphisms, and denote the set of such by $\operatorname{Inn}(G)$).
(b) Prove that $\operatorname{Aut}(G)$ is a group and $\operatorname{Inn}(G)$ is a subgroup.
(c) Describe $\operatorname{Inn}(G)$ when G is abelian.
(d) Consider the map $G \rightarrow \operatorname{Inn}(G), x \rightarrow c_{x}$. Prove that this is a surjective homomorphism with kernel $Z(G)$ (the center of G).

