Question 1

Let G be a group. Recall that for $a \in G$, we write $|a|$ for the order of a (the least positive integer n such that $a^{n}=e$, or ∞ if no such n exists).
(a) Given $a \in G$, prove that $|a|=\left|a^{-1}\right|$. (Be careful about the case where a is of infinite order).
(b) Given commuting elements $a, b \in G$, both of finite order, prove that $|a b|$ divides $l c m(|a|,|b|)$.
(c) Let D be the group of symmetries of the real line that take integers to integers. Find distinct elements $a, b \in D$, both of order 2 . What is the order of $a b$? (D is the infinite dihedral group. Think of the the real line as a regular n-gon, with $n=\infty$).

