Question 1
This question asks you to prove the classic binomial theorem.

For integers $n \geq i \geq 0$, define

$$
\binom{n}{i}=\frac{n!}{i!(n-i)!}
$$

where $n!=1 \cdot 2 \cdot 3 \cdots n$. Notice $0!=1$, following our usual convention.
(a) Prove that (when $n>i$ )

$$
\binom{n}{i}+\binom{n}{i+1}=\binom{n+1}{i+1}
$$

(b) Prove that $\binom{n}{i}$ is an integer.
(c) Prove the binomial theorem: for $a, b, n \in \mathbb{Z}$ with $n \geq 0$, the following holds:

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}
$$

## Question 2

The goal of this problem is to prove Fermat's Little Theorem.
(a) Let $p$ be a positive prime and $i$ a positive integer satisfying $p>i$. Prove $p$ divides $\binom{p}{i}$.
(b) Let $p$ be as above and let $a, b$ be integers. Prove $p$ divides $(a+b)^{p}-a^{p}-b^{p}$.
(c) Deduce Fermat's little theorem: given a positive prime $p$ and an integer $a, p$ divides $a^{p}-a$.

