MATH 356 Homework Assignments

Fall 2006

- HW 1, Due Thursday, Sept. 21.
- 1-1: 5
- 1-2: 6
- 2-1: 7
- 3-1: 8
- HW 2, Due Thursday, Sept. 28.
- 3-4: 2
- 4-1: 6
- The Pell sequence $\left\{P_{n}\right\}_{n=0}^{\infty}$ is given by $P_{0}=0, P_{1}=1$, and

$$
P_{n+1}=2 P_{n}+P_{n-1},
$$

for $n \geq 1$.

1. Express the generating function of $\left\{P_{n}\right\}_{n=0}^{\infty}$ as a rational function.
2. Prove that

$$
P_{n}=\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}}
$$

- HW 3, Due Thursday, Oct. 19.
- 5-3: 1(b)
-6-1: 4, 6 .
- HW 4, Due Thursday, Oct. 26.
- 6-2: $2,10,11$
- 6-3: 1
- 6-4: 11
- HW 5, Due Thursday, Nov. 2.

1. For each of the following partitions, draw the Ferrers graph and find the conjugate partition:
(a) $5+3+2+1$
(b) $6+3+1$
(c) $7+6+4+3$
2. Show that for all positive integers n, the number of partitions of n into m distinct parts equals the number of partitions of n wherein $1,2,3, \ldots, m$ all appear at least once as a part, and no part is greater than m. Hint: consider the Ferrers graph.
3. Consider the following claim: the number of partitions of n into nonmultiples of three equals the number of partitions of n where no part may appear more than twice. Prove the claim
(a) bijectively, and
(b) using generating functions.
4. Prove that the number of partitions of n into distinct parts congruent to 0,2 , or 3 modulo 4 equals the number of partitions of n into parts congruent to 2 , 3 , or 7 modulo 8 . Hint: use generating functions.

- HW 6, due Thursday, Nov. 30.

1. (a) Prove that the generating function for partitions with exactly j parts is

$$
\frac{q^{j}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{j}\right)} .
$$

(b) Give a combinatorial proof of the following series-product identity of Euler:

$$
\sum_{j=0}^{\infty} \frac{q^{j}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{j}\right)}=\prod_{k=1}^{\infty} \frac{1}{1-q^{k}}
$$

2. The first Rogers-Ramanujan identity is given by

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{q^{j^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{j}\right)}=\prod_{k=0}^{\infty} \frac{1}{\left(1-q^{5 k+1}\right)\left(1-q^{5 k+4}\right)} \tag{1}
\end{equation*}
$$

Show that (1) is equivalent to the following partition theorem:

Let $R(n)$ denote the number of partitions of n into parts which are distinct, nonconsecutive integers. Let $S(n)$ denote the number of partitions of n into parts congruent to 1 or 4 modulo 5 . Then $R(n)=S(n)$ for all integers n.

Suggested way to proceed:
(a) Show that

$$
\sum_{n=0}^{\infty} S(n) q^{n}=\prod_{k=0}^{\infty} \frac{1}{\left(1-q^{5 k+1}\right)\left(1-q^{5 k+4}\right)}
$$

(b) Show that

$$
\frac{q^{j^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{j}\right)}
$$

is the generating function for partitions of the type counted by $R(n)$ which have exactly j parts.
(c) Use part (b) to show that

$$
\sum_{n=0}^{\infty} R(n) q^{n}=\sum_{j=0}^{\infty} \frac{q^{j^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{j}\right)}
$$

(d) Equate the generating functions and conclude that $R(n)=$ $S(n)$
Note: You are not being asked to prove (1).

