GOODIES 1

Problem 1. Let X be a Noetherian topological space.
(a) If an irreducible closed set Y is contained in a union $\bigcup X_{i}$ of finitely many closed sets X_{i}, then $Y \subset X_{i}$ for some i.
(b) X has finitely many components.
(c) X is the union of its components.
(d) X is not the union of any proper subset of its components.

Problem 2. Let X be any space with functions and $Y \subset \mathbb{A}^{n}$ an affine variety. Show that a function $f: X \rightarrow Y$ is a morphism if and only if each coordinate function $f_{i}: X \rightarrow k$ is regular for $1 \leq i \leq n$.

Problem 3. Let $X=V(x y-z w) \subset \mathbb{A}^{4}$ and $U=D(y) \cup D(w) \subset X$. Define a regular function $f: U \rightarrow k$ by $f=x / w$ on $D(w)$ and $f=z / y$ on $D(y)$. Show that there are no polynomial functions $p, q \in A(X)$ such that $q(a) \neq 0$ and $f(a)=p(a) / q(a)$ for all $a \in U$.

Problem 4. Let X be an affine variety such that the affine coordinate ring $A(X)$ is a unique factorization domain. Let $U \subset X$ be an open subset. Show that if $f: U \rightarrow k$ is any regular function, then there exist $p, q \in A(X)$ such that $q(x) \neq 0$ and $f(x)=p(x) / q(x)$ for all $x \in U$.

Problem 5. (a) $k\left[\mathbb{A}^{n} \backslash\{0\}\right]=k\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 2$.
(b) $\mathbb{A}^{n} \backslash\{0\}$ is not an affine variety for $n \geq 2$.
(c) Every global regular function on \mathbb{P}^{n} is constant, i.e. $k\left[\mathbb{P}^{n}\right]=k$.
(d) \mathbb{P}^{n} is not quasi-affine for $n \geq 1$.

Problem 6. Let $\varphi: \mathbb{A}^{1} \rightarrow V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ be the morphism given by $\varphi(t)=$ $\left(t^{2}, t^{3}\right)$. Show that φ is bijective, but not an isomorphism.

Problem 7. Let X be an affine variety and let $f \in k[X]$. Show that $D(f)$ is an affine variety with coordinate ring $k[D(f)] \cong k[X]_{f}$. Here $k[X]_{f}=S^{-1} k[X]$ is the localized ring defined by the multiplicatively closed subset $S=\left\{f^{n} \mid n \in \mathbb{N}\right\}$. (Hint: Show that $D(f)$ is isomorphic to a closed subset of $X \times \mathbb{A}^{1}$.)

Problem 8. Define the homogenization of a polynomial $f \in k\left[x_{1}, \ldots, x_{n}\right]$ to be $f^{*}=x_{0}^{\operatorname{deg}(f)} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right)$. Equivalently, if we write $f=f_{0}+f_{1}+\cdots+f_{d}$, with f_{i} a form of degree i and $f_{d} \neq 0$, then $f^{*}=x_{0}^{d} f_{0}+x_{0}^{d-1} f_{1}+\cdots+f_{d} \in$ $k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.

Given any ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$, let $I^{*} \subset k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ be the homogeneous ideal generated by $\left\{f^{*} \mid f \in I\right\}$.
(a) Find an example where $I=\left\langle h_{1}, \ldots, h_{m}\right\rangle$ and $I^{*} \neq\left\langle h_{1}^{*}, \ldots, h_{m}^{*}\right\rangle$.
(b) Let $X \subset \mathbb{A}^{n}$ be a closed subvariety. Identify \mathbb{A}^{n} with $D_{+}\left(x_{0}\right) \subset \mathbb{P}^{n}$ and let \bar{X} be the closure of X in \mathbb{P}^{n}. Show that $I(\bar{X})=I(X)^{*} \subset k\left[x_{0}, \ldots, x_{n}\right]$.

Problem 9. Let R be a graded ring and let $f \in R$ be any homogeneous element. Then R_{f} is also a graded ring. Let $R_{(f)} \subset R_{f}$ be the subring of all elements of degree 0 .
Problem 10. Let $X \subset \mathbb{P}^{n}$ be a projective variety with projective coordinate ring $R=k\left[x_{0}, \ldots, x_{n}\right] / I(X)$. Let $f \in R$ be a non-constant homogeneous element. Show that $D_{+}(f) \subset X$ is an open affine subvariety with affine coordinate ring $k\left[D_{+}(f)\right]=R_{(f)}$.

Problem 11. Show that if R is a finitely generated reduced k-algebra then the space with functions $\operatorname{Spec}-\mathrm{m}(R)$ is an affine variety.

Problem 12. Let X be any space with functions. A map $\varphi: \mathbb{P}^{n} \rightarrow X$ is a morphism if and only if $\varphi \circ \pi: \mathbb{A}^{n+1} \backslash\{0\} \rightarrow X$ is a morphism.

Problem 13. Let $\varphi: X \rightarrow Y$ be a morphism of spaces with functions and suppose $Y=\bigcup V_{i}$ is an open covering such that each restriction $\varphi: \varphi^{-1}\left(V_{i}\right) \rightarrow V_{i}$ is an isomorphism. Then φ is an isomorphism.

Problem 14. Assume that the characteristics of k is not 2 . If $C=V_{+}(f) \subset \mathbb{P}^{2}$ is any curve defined by an irreducible homogeneous polynomial $f \in k[x, y, z]$ of degree 2 , then $C \cong \mathbb{P}^{1}$.

Problem 15. (a) Any subspace of a separated space with functions is separated.
(b) A product of separated spaces with functions is separated.

Problem 16. Let X be a pre-variety such that for each pair of points $x, y \in X$ there is an open affine subvariety $U \subset X$ containing both x and y.
(a) Show that X is separated.
(b) Show that \mathbb{P}^{n} has this property.

Problem 17. [Hartshorne II.2.16 and II.2.17]
Let X be any pre-variety and $f \in k[X]$ a regular function.
(a) If h is a regular function on $D(f) \subset X$ then $f^{n} h$ can be extended to a regular function on all of X for some $n>0$. [Hint: Let $X=U_{1} \cup \cdots \cup U_{m}$ be an open affine cover. Start by showing that some $f^{n} h$ can be extended to U_{i} for each i.]
(b) $k[D(f)]=k[X]_{f}$.
(c) Let R be a k-algebra and let $f_{1}, \ldots, f_{r} \in R$ be elements that generate the unit ideal, $\left(f_{1}, \ldots, f_{r}\right)=R$. If $R_{f_{i}}$ is a finitely generated k-algebra for each i, then R is a finitely generated k-algebra.
(d) Suppose $f_{1}, \ldots, f_{r} \in k[X]$ satisfy $\left(f_{1}, \ldots, f_{r}\right)=k[X]$ and $D\left(f_{i}\right)$ is affine for each i. Then X is affine.

