Due: Thursday, December 3, in class.
Problem 1: (Cayley-Hamilton)
Let R be a commutative ring, let M an R-module generated by n elements, and let $\phi: M \rightarrow M$ be an R-homomorphism. Then there exists a monic polynomial $p(x)=x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}$ in $R[x]$ such that $p(\phi)=0$ holds in $\operatorname{End}_{R}(M)$. Hint: Let M be generated by $\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$, write $\phi\left(m_{j}\right)=\sum_{i} a_{i j} m_{i}$, and set $A=\left(a_{i j}\right) \in M_{n}(R)$. Then show that $p(\phi)=0$ where $p(x)=\operatorname{det}\left(x I_{n}-A\right)$. You can use the equation in M^{n}, where the matrix has coefficients in $R[\phi]$:

$$
\left(\phi I_{n}-A\right)\left[\begin{array}{c}
m_{1} \\
\vdots \\
m_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

Problem 2:

Let R be a commutative ring and let $\phi: R^{m} \rightarrow R^{n}$ be an injective homomorphism of R-modules. Show that $m \leq n$.
Hint: Assume that $\phi: R^{n} \rightarrow R^{n}$ is an injective R-homomorphism such that $\phi\left(R^{n}\right) \subset \operatorname{Span}_{R}\left\{e_{1}, \ldots, e_{n-1}\right\}$. Show that ϕ satisfies an equation of the form $\phi^{k}+a_{k-1} \phi^{k-1}+\cdots+a_{1} \phi+a_{0}$ in $\operatorname{End}_{R}\left(R^{n}\right)$, where $a_{i} \in R$ and $a_{0} \neq 0$. Now apply this equation to e_{n}.

Problems from Basic Algebra 1:

3.6: 2
3.7: 2
3.8: 1
3.10: 2, 5, 6

