Nov 2017
Letter to Bill Duke on “Inversive Coordinates”

from Alex Kontorovich

Dear Bill,

Let me make more precise my comment about using so-called “inversive coordinates” to
treat points in the upper half plane H in the same vein as geodesics in H. My discussion
below is basically “well-known” and some initial ideas can be traced back to Clifford and
Darboux; I include at the end just a few references. (I learned much of this point of view
from discussions with Kei Nakamura.) My claim is the following: imagine being a point in
H and moving straight down to the boundary 0H = R = RU {o0}. After an infinite amount
of time, you arrive at the boundary (x-axis).

Claim: when you keep moving past the x-axis, what develops in the upper half-plane is
actually a geodesic above a (Euclidean) interval in the boundary. Here is what I have in mind:
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Before explaining why this is a reasonable thing to say, let me point out that it general-
izes to arbitrary dimensional upper half-space H". When a point moves “down” past the
boundary, what appears in H" is a co-dim-1 geodesic hemisphere above a Euclidean ball in
the boundary:
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I’ll return to H to keep the original discussion, but everything below basically generalizes on
replacing “interval” with “ball,” x with x = (21, ..., 2, 1), and 2? with |x|? = 22+ - - +22_,.

To a geodesic above the Euclidean interval |z — 29| < r in the boundary OH, we attach
the following “inversive coordinates”:



where 7 is the “co-radius”, defined as the radius of the inversion of the interval through the
unit interval. It is clear that the interval [x — r,z 4 r] inverted through the unit interval
becomes [1/(xz +7),1/(z — )], so the co-radius is:
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(We write |z|? here instead of just #? to emphasize that this formula for the co-radius is
valid in all dimensions.) Rearranging terms, we may write this as
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where @ is the “discriminant” (quadratic) form with half-Hessian

0 1/2

Q=112 o0
~1

4

In general, the “—1” above is replaced by —I,_;. Unsurprisingly, this form ) has signature
(1,2), so the quadric @ = —1 is a one-sheeted hyperboloid.

In a similar way, we may attach the following inversive coordinates to a point (x,y) € H:
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w=w(z,y) :

where ¥ now is the “co-height”, defined to be

~ Yy
TR <1>

Again this is the “y-part” of the image of (x,y) reflected through the (Euclidean) unit circle.
From (1), it follows that

so w lies on one sheet (the “top” one, the one with y > 0) of the two-sheeted hyperboloid
(Q = 1. This top sheet is of course itself a model for H, and is what you “see”. So once the
point w has traveled infinitely far, arrived at the boundary cone ) = 0, and moved past the
cone to become v on ) = —1, what happens is this. The point v is Q-orthogonal to a plane

P, ={t e R"™ . vQt' =0}, (t=transpose)

and the intersection of this plane with the top sheet is (pointwise, under the map (z,y) — w)

the corresponding geodesic in H! Here’s the picture I have in mind.
2



Py

What happens to this plane picture when we use the point w on ) = 1 instead? The
orthogonal plane P, is still “there,” but we simply don’t “see” it because it doesn’t intersect
the top sheet; all we see instead is the point w.

A lot of nice things happen in these coordinates. For one, conformal maps are now just
elements of SOg(R), the connected component of the identity of the real special orthogonal
group preserving (). This is simply a restatement of the standard fact that SLy(R) is a
double cover of SOy (and in higher dimensions, one uses Clifford algebras). Another is that
it’s very easy to write down the action of reflection of a point w through a geodesic expressed

in inversive coordinates as v. Indeed, one has the standard formula for reflection through
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the plane P, orthogonal to v:

wQv!

vQvT

Wi W — 2 v =w-I+2Q vi-v).

The matrix in parentheses above is the (anti-conformal) Mobius transformation in Og(R)
representing reflection through the geodesic corresponding to v. (And there’s no typo here:
vl . v is a rank one matrix; note also that we used vQv’ = —1.)

What happens if the desired geodesic is vertical, so is not expressible as being above an
interval |z| < r, i.e. the one connecting xy to co? Simply take the limit as r — oo of the
inversive coordinates corresponding to the intervals |z 4+ r| < r; it is easy to compute that
one obtains in the limit v = (2x0,0,1). By the way, inversive coordinates actually give a
geodesic an orientation: Imagine taking the geodesic above an interval [a, b], that is, going
“from” a to b, and sending b to the right all the way to infinity, and past infinity to negative
infinity around until it comes up from below, becoming the interval [c, a]. The corresponding
geodesic still goes from a to ¢, so has the opposite orientation; thus the interval is really
(—o0, c]U]a, 00), that is, the exterior of [c, a]. One way of seeing this is to follow the geodesic
flow forwards and backwards.

Yet another nice property is the Claim that the Q)-product of two geodesics computes
their “generalized” hyperbolic distance:

d
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(For but one proof, send one geodesic to the upper y-axis and compute.)

If the geodesic on the left in the above image moves to the right until after the two intersect
(at angle 6, say), the product becomes v; x vo = cosf (that is, it is less than 1), which one
can think of as being the same as above but with d = if imaginary. If it keeps moving to the
right until the two intervals are nested (keeping in mind the orientation discussion above),
the product becomes less than —1, so it is — cosh d. This is what is meant by “generalized”
distance in the Claim above.

These inversive coordinates are really nice for the reasons described above (i.e., the calcula-
tions are particularly simple), but this whole discussion becomes completely standard (at the
expense of slightly more complicated formulae) on making a linear change of variables from
the discriminant form @ to the “Pythagorean” (or “Lorenzian”) form Q(a, b, c) = a®>+b*—c2.
(This phenomenon is also familiar — compare the spin representation of the discriminant form
(3.31) of [Kon13| (granted, in higher dimension) to that of the Pythagorean form (4.6) there.)
The top sheet of Q1 = —1 (note that @)y has signature (2, 1) while the discriminant form @
has opposite signature; hence the sign change) is identified with the unit disk A% + B* < 1
in the plane ¢ = 0 (which then is standard to identify with H) under projection to the point

(0,0,—1). Here is a nice picture I found online [Sta] (so didn’t have to make).
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Best wishes,

Alex

is given by:

H—-D:z—

PS Let me make the last paragraph above completely explicit. The standard map H — D

i ’_)x2+y2—1+‘ —2x
: T+ i .
z+1 Y 2+ (y+1)2 2?2+ (y+1)2
For (A,B) = A+iB € D in the disk, the map (projection through (0,0, —1)) to the top
Lorenzian sheet 77 : a® +b*> — ¢ = —1,¢ > 0 is given by:
2A
D— T :(A B)w~ (abc)= (

2B

1+ A%+ B?
1—(A2+B?)’1—(A2+ B?)’1— (A2 + B?)
It is trivial to concatenate the two, getting a map H — 77 : (H — D) o (D — 77) given by
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I think this much is basically everywhere in the literature. What is (perhaps) not completely
trivial is to recognize the above as
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Hence concatenating this with the linear map 7; — 7 (where T : Q(%, i, 5) =1,y >0is
the “discriminant” top sheet) given by
1
ﬂ —T: (a,b,C) = (/_\
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furnishes explicitly the inversive coordinates
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