Letter to Arthur Baragar on a "Crystallographic Sphere Packing"

from Alex Kontorovich

Dear Arthur,
As mentioned when we discussed, the "Structure Theorem for Crystallographic Packings" (see Theorem 31 in the paper [KN17] with Kei Nakamura) allows one to just "look" at a Coxeter diagram and immediately see the corresponding sphere packing. Let me carry out the calculation explicitly (and post the corresponding Mathematica file) for the case of the integer orthogonal group $O_{F}(\mathbb{Z})$ preserving the quadratic form F, where

$$
F\left(x_{1}, \ldots, x_{5}\right):=x_{1}^{2}+\cdots+x_{4}^{2}-3 x_{5}^{2} .
$$

This orthogonal group $O_{F}(\mathbb{Z})$ is reflective, meaning that the group generated by all reflections in $O_{F}(\mathbb{Z})$ is itself a lattice (i.e. is of finite index in $O_{F}(\mathbb{Z})$). One proves this by running Vinberg's algorithm [Vin72], as carried out in Mcleod [Mcl11] (see the case $n=4$ in Mcleod's Figure 1). The resulting reflection group has Coxeter diagram given by:

The meaning of this diagram is that "walls" (spheres/planes) labelled (1) and (2) meet at infinity (tangentially), (2) and (3) meet at dihedral angle $\pi / 4,(3)$ and (4) meet at dihedral angle $\pi / 3$, as do (4) and (5), and lastly, (5) and (6) meet at dihedral angle $\pi / 6$, with all other dihedral angles being $\pi / 2$ (that is, orthogonal). To build a packing based on this diagram, we will need to realize the walls of a configuration explicitly. Instead of running Vinberg's algorithm (the knowledge of which is not necessary for what follows), since we are already given the diagram, we will reverse-engineer the configuration, as follows.

We will use inversive coordinates (see [Kon17]), attaching to a sphere \mathcal{S} of radius r and center (x, y, z) (oriented internally) the vector

$$
v_{\mathcal{S}}:=\left(\frac{1}{\widehat{r}}, \frac{1}{r}, \frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right)
$$

where the "co-radius" \widehat{r} is the radius of the sphere after inversion through the unit sphere; one calculates that

$$
\widehat{r}=\frac{r}{x^{2}+y^{2}+z^{2}-r^{2}} .
$$

For a sphere with external orientation, r is negative. If \mathcal{S} is a plane, the inversive coordinates are obtained by taking limits of appropriate spheres as $r \rightarrow \infty$, so the second entry in $v_{\mathcal{S}}$ becomes 0 , and it turns out the last three coordinates become the unit normal vector to the plane in the direction of its interior.

From $(\boldsymbol{\oplus})$, it is immediate that $Q\left(v_{\mathcal{S}}\right)=-1$, where Q is the quadratic form with halfHessian

$$
Q=\left(\begin{array}{lll}
& \frac{1}{2} & \\
\frac{1}{2}_{2}^{2} & \\
& & -I_{3}
\end{array}\right)
$$

(Here I_{3} is the 3×3 identity matrix.) The dihedral angle θ between spheres given by inversive coordinates v_{1}, v_{2} is computed by the "inversive product"

$$
v_{1} \star v_{2}=\cos \theta, \quad \text { where } \quad v_{1} \star v_{2}:=v_{1} \cdot Q \cdot v_{2}^{\dagger}
$$

and " \dagger " denotes transpose. If the spheres do not meet but instead are separated by a hyperbolic distance d, then $v_{1} \star v_{2}=\cosh d$. Hence to realize the above Coxeter diagram explicitly as walls, we will need to find inversive coordinates v_{1}, \ldots, v_{6} of the six walls in the diagram, so that the "Gram matrix" $G=\left[v_{i} \star v_{j}\right]$ of all inversive products becomes:

$$
G=\left(\begin{array}{cccccc}
-1 & 1 & 0 & 0 & 0 & 0 \\
1 & -1 & \frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & -1 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & -1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & \frac{1}{2} & -1 & \frac{\sqrt{3}}{2} \\
0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} & -1
\end{array}\right) .
$$

To do this, may take (1) and (2) to be horizontal planes (tangent at infinity), and since (4), (5), and (6) are orthogonal to (1) and (2), they must then be vertical planes; moreover these three form a 30-60-90 triangle. So we may already assign (1) to have inversive coordinates, say,

$$
v_{1}=(0,0,0,0,-1),
$$

which means that (1) is the $x y$-plane with normal vector pointing down (i.e., its interior is the lower half-space). The wall (2) will similarly have coordinates

$$
v_{2}=(?, 0,0,0,1),
$$

that is, a plane with upwards pointing normal vector, but we're not sure yet where in space it will be positioned. Let us choose (4) to be the $x z$-plane with normal pointing in the positive- y direction:

$$
v_{4}=(0,0,0,1,0) .
$$

Then (5) can also be a vertical plane through the origin, and in order to meet (4) at angle $\pi / 3$, we set

$$
v_{5}=\left(0,0, \frac{\sqrt{3}}{2},-\frac{1}{2}, 0\right)
$$

This determines that wall (6) has coordinates

$$
v_{6}=(?, 0,-1,0,0),
$$

and "?" here can be chosen arbitrarily, say, 2, so that (6) becomes the plane $x=1$. Having determined v_{1}, v_{4}, v_{5}, and v_{6}, we may compute the coordinates, v_{3}, of (3) by using knowledge of its inversive products with v_{1}, v_{4}, v_{5}, and v_{6}. We find (see the Mathematica file) that

$$
v_{3}=\left(-\frac{4}{\sqrt{3}}, \frac{1}{2 \sqrt{3}},-\frac{1}{2 \sqrt{3}},-\frac{1}{2}, 0\right) .
$$

Now the "?" in v_{2} may be determined by solving $v_{2} \star v_{3}=\cos \pi / 4=\sqrt{2} / 2$; we compute that

$$
v_{2}=(2 \sqrt{6}, 0,0,0,1)
$$

Collecting these vectors into a matrix $V=\left\{v_{i}\right\}$ whose rows are the coordinates,

$$
V=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & -1 \\
2 \sqrt{6} & 0 & 0 & 0 & 1 \\
-\frac{4}{\sqrt{3}} & \frac{1}{2 \sqrt{3}} & -\frac{1}{2 \sqrt{3}} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
2 & 0 & -1 & 0 & 0
\end{array}\right)
$$

we may check that indeed

$$
V \cdot Q \cdot V^{\dagger}=G
$$

Thus we have the desired Gramian (what you would call "intersection pairing"). Here's the configuration in space:

Now our Structure Theorem says that one obtains a packing by taking the "cluster" to be just the wall (1), and letting reflections through to rest (the "cocluster") act on (1). The reflection R_{v} through a sphere \mathcal{S} given by inversive coordinates v is a Mobius transformation, that is, $R_{v} \in O_{Q}(\mathbb{R})$, and is given by the standard formula

$$
R_{v}: x \mapsto x-2 \frac{x \star v}{v \star v} v, \quad \text { that is, } \quad R_{v}=I+2 Q \cdot v^{\dagger} \cdot v .
$$

(This is because v is actually the normal vector in "Lorentz space" to the plane corresponding to \mathcal{S} - see again [Kon17].) Thus our "thin" group $\Gamma<O_{Q}(\mathbb{R})$ acts on the right on v_{1} and is
generated by the reflections:

$$
\begin{gathered}
R_{2}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
24 & 1 & 0 & 0 & 2 \sqrt{6} \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-4 \sqrt{6} & 0 & 0 & 0 & -1
\end{array}\right), R_{3}=\left(\begin{array}{ccccc}
\frac{1}{3} & \frac{1}{12} & -\frac{1}{12} & -\frac{1}{4 \sqrt{3}} & 0 \\
\frac{16}{3} & \frac{1}{3} & \frac{2}{3} & \frac{2}{\sqrt{3}} & 0 \\
-\frac{4}{3} & \frac{1}{6} & \frac{5}{6} & -\frac{1}{2 \sqrt{3}} & 0 \\
-\frac{4}{\sqrt{3}} & \frac{1}{2 \sqrt{3}} & -\frac{1}{2 \sqrt{3}} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \\
R_{4}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), R_{5}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), R_{6}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
4 & 1 & -2 & 0 & 0 \\
4 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

Now we can look at the orbit $\mathcal{O}=v_{1} \cdot \Gamma$:

And that's all there is to it! Now, this is all just to construct the packing; issues of (super)integrality, etc, are discussed in [KN17]. Note that, though we started with a nice integral form F, the vectors v_{j} and reflection matrices R_{j} can have arbitrary (not even algebraic, should we choose to apply some random Mobius transformation to the whole picture) entries. But because the "supergroup" (see [KN17]) of Γ is arithmetic (in particular, it is commensurate to $O_{F}(\mathbb{Z})$), we know that there exist configurations of this packing in which all bends (reciprocals of radii) are integers.

Best wishes,
Alex

References

[KN17] A. Kontorovich and K. Nakamura. Geometry and arithmetic of crystallographic packings, 2017. https://arxiv.org/abs/1712.00147.
[Kon17] A. Kontorovich. Letter to Bill Duke, 2017. https://math.rutgers.edu/~alexk/files/ LetterToDuke.pdf.
[Mcl11] John Mcleod. Hyperbolic reflection groups associated to the quadratic forms $-3 x_{0}^{2}+x_{1}^{2}+\cdots+x_{n}^{2}$. Geom. Dedicata, 152:1-16, 2011.
[Vin72] È. B. Vinberg. The groups of units of certain quadratic forms. Mat. Sb. (N.S.), 87(129):18-36, 1972.

