Alex V. Kontorovich

October 26, 2021

1 Added 10/26/21:

These notes are from a research project supervised by John Nash, starting around 2001/2002. He had secured funding through the NSF, namely grant SES-0001711, and used it to hire research assistants. The notes below were written around 2003/2004 to document what had been done on the project. Nash's paper on these investigations eventually appeared in: Nash, John F., Jr., "The agencies method for modeling coalitions and cooperation in games." Int. Game Theory Rev. 10 (2008), no. 4, 539-564.

2 Introduction

There are two stages and three players in the game. In the first stage, two players join into a coalition, with one representing the other, while the third player is left by himself. In the second stage, all three players join into one coalition with either the third player heading the group, or the representative from the previous stage leading the entire pack.

2.1 Notation and Defined Relations

The players are denoted by $P 1, P 2$, and $P 3$. When $P 1$ accepts $P 2$ to be his agent, we denote the coalition by $P 21$, and from this point on, $P 2$ will represent $P 1$. Write $P i$ for a generic player or coalition, where i may be one or two numbers. To denote the payoff vector by $U B j R k$, where the coalition $P j$ represents $P k$ (Utility given By j Representing k). When we want individual components of the vector, we denote them by $u_{i} b_{j} r_{k}$ (u tility of i given by j representing k), so that $U B j R k=\left(u_{1} b_{j} r_{k}, u_{2} b_{j} r_{k}, u_{3} b_{j} r_{k}\right)$. Some examples of this:

1. The expected utility for $P 3$ if he allows $P 2$ to represent him is $u_{3} b_{2} r_{3}$.
2. When $P 3$ accepts the coalition $P 21$ to represent him, the payoff vector is $U B 21 R 3$. This should be distinguished from the case
3. when the coalition $P 13$ accepts $P 2$ as their agent. In this case, the vector is $U B 2 R 13$.

The probability that a player $P i$ accepts $P k$ is denoted by $a_{i} f_{k}$ (probability of a cceptance of i f or k). E.g. In the first round, the probability that $P 1$ chooses $P 2$ to represent him is $a_{1} f_{2}$. We denote the probability with which coalition $P i j$ accepts player $P k$ by $a_{i j}=a_{i j} f_{k}$, the default being the shorter form. Similarly, we write $a f_{i j}=a_{k} f_{i j}$ for the reverse scenario.

For the first round, instead of $a_{i} f_{i}$, we write n_{i} (no acceptance) with the obvious rule that

$$
\begin{equation*}
a_{i} f_{j}+a_{i} f_{k}+n_{i}=1 \tag{1}
\end{equation*}
$$

where $j \neq k \neq i$.
Each player and coalition has a demand. It is a strategic variable, chosen to optimize profit based on equilibrium conditions which we will solve in Section 2. In the first stage, every player is on his own, so player Pi demands the same amount from both of the other players. We denote this demand by d_{i}. For the second stage, we write $d_{i} f_{j}$ for the demand of player or coalition $P i$ f or player or coalition $P j$, with the same shorthand as in the case $a_{i} f_{j}$. So player $P 3$ may have a different demand in the first stage, d_{3}, as he does for the coalition $P 21$ (in the second stage) $d f_{21}=d_{3} f_{21}$. And his demand also differs depending on the coalition with which he is dealing, so $d f_{21}$ is not necessarily equal to $d f_{12}$.

In the first stage, if no player chooses to have another represent him, the game is allowed to repeat with probability $\left(1-\varepsilon_{4}\right)$. If the game is not allowed to repeat, it ends with a zero payoff for each player. If more than one player asks to be represented, a uniform random event decides which player is represented. So at the end of stage one, either the players all have zero payoff, or one player is alone and another is leading his two-man coalition.

A similar procedure occurs in the second stage. Should neither the coalition nor the lone player want to accept the other as the representative, the game ends with probability ε_{5}. If this occurs, the lone player, $P i$, receives a zero payoff, and the other two share an amount $b_{i} \in[0,1]$. E.g. if coalition $P 12$ does not accept $P 3$ and vice versa, then with probability ε_{5}, the payoff vector is $\left(\frac{b_{3}}{2}, \frac{b_{3}}{2}, 0\right)$. For simplicity of notation, we will denote the last vector by $\frac{b_{3}}{2} \delta_{3}$, where δ_{i} has a 0 in the i th component of the vector, and 1 in the other two. E.g. $\delta_{3}=(1,1,0)$.

With probability $\left(1-\varepsilon_{5}\right)$, the second stage is allowed to repeat, giving the players another chance to join together.

If there is an acceptance in the second stage, and all three players join a coalition, and are awarded the full amount, 1. The player leading the coalition then divides the payoff among the members of his coalition. E.g. if $P 2$ accepts $P 1$ in the first round and $P 12$ accepts $P 3$ in the second, then player $P 3$ determines the payoff vector, $U B 3 R 12$. Since the total amount given to $P 3$ is 1 , it is clear that we must have $u_{1} b_{3} r_{12}+u_{2} b_{3} r_{12}+u_{3} b_{3} r_{12}=1$. The same goes for any three-man coalition - the sum of the entries of the payoff vector is 1 . Since the final payoff is determined by the lead player, it becomes a strategic variable, and has an equilibrium condition which we solve for in Section 2.

In the first stage, the probabilities are related to the demands and utilities in the following way. For players $P i$ and $P j$, define

$$
\begin{equation*}
A_{i} F_{j}=\exp \left(\frac{u_{i} b_{j} r_{i}-d_{i}}{\varepsilon_{3}}\right) \tag{2}
\end{equation*}
$$

and then let

$$
\begin{equation*}
a_{i} f_{j}=\frac{A_{i} F_{j}}{1+A_{i} F_{j}+A_{i} F_{k}}, \tag{3}
\end{equation*}
$$

with $i \neq j \neq k$. The constant, ε_{3}, enters, determining the sensitivity of the demand. If ε_{3} is close to zero, the slightest difference between the utility given and amount demanded drives the probability to zero or one, if the difference is negative or positive, respectively. The bigger ε_{3}, the less this difference is felt in the overall probability. It is easy to verify that $n_{i}=\frac{1}{1+A_{i} F_{j}+A_{i} F_{k}}$, and so $a_{i} f_{j}+a_{i} f_{k}+n_{i}=1$. E.g. in stage one, the probability that player $P 1$ chooses to accept player
$P 2$ as his agent is:

$$
\begin{aligned}
a_{1} f_{2} & =\frac{\exp \left(\frac{u_{1} b_{2} r_{1}-d_{1}}{\varepsilon_{3}}\right)}{1+\exp \left(\frac{u_{1} b_{2} r_{1}-d_{1}}{\varepsilon_{3}}\right)+\exp \left(\frac{u_{1} b_{3} r_{1}-d_{1}}{\varepsilon_{3}}\right)} \\
& =\frac{\exp \left(\frac{u_{1} b_{2} r_{1}}{\varepsilon_{3}}\right)}{\exp \left(\frac{d_{1}}{\varepsilon_{3}}\right)+\exp \left(\frac{u_{1} b_{2} r_{1}}{\varepsilon_{3}}\right)+\exp \left(\frac{u_{1} b_{3} r_{1}}{\varepsilon_{3}}\right)}
\end{aligned}
$$

In the second stage, again a similar situation occurs. For player $P i$ and coalition $P j k$, define

$$
\begin{equation*}
A F_{j k}=A_{i} F_{j k}=\exp \left(\frac{u_{i} b_{j k} r_{i}-d f_{j k}}{\varepsilon_{3}}\right) \tag{4}
\end{equation*}
$$

and the formula for this stage is simply:

$$
\begin{equation*}
a f_{j k}=\frac{A F_{j k}}{1+A F_{j k}} \tag{5}
\end{equation*}
$$

For coalition $P i j$ and player $P k$, we have:

$$
\begin{equation*}
A_{i j}=A_{i j} F_{k}=\exp \left(\frac{u_{i} b_{k} r_{i j}-d_{i j}}{\varepsilon_{3}}\right) \tag{6}
\end{equation*}
$$

and again:

$$
\begin{equation*}
a_{i j}=\frac{A_{i j}}{1+A_{i j}} \tag{7}
\end{equation*}
$$

The variables of the form $a_{i} f_{j}$ denote a player's choice within the game. To denote an actual outcome, we need another notation. If a situation has payoff $U B X$, we write the probability of the event as $p\{X\}$. E.g. the utility vector associated with $P 2$ accepting $P 1$ is $U B 1 R 2$, and so the probability of $P 2$ succeeding in accepting $P 1$ is $p\{1 R 2\}$. (In MATHEMATICA, this is simply $p 12$.)

This is all of the notation we will be using. Now we take our assumptions and gather them together to derive formulaic relations of defined quantities.

2.2 Derived Relations

Say we have come to stage two, and in the first stage, player $P 1$ accepted $P 2$ to be his representative. This is associated with the payoff vector $U B 2 R 1$, for which we will now try to find a formula. So we are looking at stage two, and we have the coalition P21 and the player P3. There are four possible combinations:

1. $P 21$ chooses to accept $P 3$, and $P 3$ does not accept $P 21$. This event has probability $\left(a_{21}\right)\left(1-a f_{21}\right)$, and the payoff vector is $U B 3 R 21$.
2. $P 21$ chooses not to accept $P 3$, but $P 3$ does accept $P 21$. This event has probability $\left(1-a_{21}\right)\left(a f_{21}\right)$, and the payoff vector is $U B 21 R 3$.
3. Both players accept the other as representatives. The event has probability $\left(a_{21} f_{3}\right)\left(a_{3} f_{21}\right)$. From here, a fair coin is flipped to determine the outcome, so the expected payoff is simply $\frac{1}{2}(U B 21 R 3+U B 3 R 21)$, where this is regular vector addition and scalar multiplication.
4. Neither player accepts the other. The event has probability $\left(1-a_{21}\right)\left(1-a f_{21}\right)$. From here, as described above, we either repeat the round with probability $\left(1-\varepsilon_{5}\right)$ (this has expected utility $U B 2 R 1$, exactly the value we're solving for!), or the game ends (with probability ε_{5}), and the payoff vector is $\left(\frac{b_{3}}{2}, \frac{b_{3}}{2}, 0\right)=\frac{b_{3}}{2} \delta_{3}$.

Adding together the products of the probabilities of the four events above and their expected payoffs, we find that:

$$
\begin{aligned}
U B 2 R 1= & \left(a_{21}\right)\left(1-a f_{21}\right) U B 3 R 21+\left(1-a_{21}\right)\left(a f_{21}\right) U B 21 R 3 \\
& +\left(a_{21}\right)\left(a f_{21}\right) \frac{1}{2}(U B 21 R 3+U B 3 R 21) \\
& +\left(1-a_{21}\right)\left(1-a f_{21}\right)\left(\left(1-\varepsilon_{5}\right) U B 2 R 1+\varepsilon_{5} \frac{b_{3}}{2} \delta_{3}\right) .
\end{aligned}
$$

Since $U B 2 R 1$ appears on both sides we solve for it and simplify:

$$
U B 2 R 1=\frac{\left(a_{21}\right)\left(2-a f_{21}\right) U B 3 R 21+\left(2-a_{21}\right)\left(a f_{21}\right) U B 21 R 3}{+\left(1-a_{21}\right)\left(1-a f_{21}\right) \varepsilon_{5} b_{3} \delta_{3}}+.
$$

Replacing 2 with $i, 1$ with j, and 3 with k, we can get the general form for this payoff vector:

$$
U B i R j=\frac{\left(a_{i j}\right)\left(2-a f_{i j}\right) U B k R i j+\left(2-a_{i j}\right)\left(a f_{i j}\right) U B i j R k}{+\left(1-a_{i j}\right)\left(1-a f_{i j}\right) \varepsilon_{5} b_{k} \delta_{k}} \begin{gather*}
2-2\left(1-a_{i j}\right)\left(1-a f_{i j}\right)\left(1-\varepsilon_{5}\right)
\end{gather*}
$$

Knowing this, we can now write down a formula for the total expected payoff vector for the entire game, U. Each player may either choose not to be represented or appoint one of two others to represent him, a total of three options. And since there are three players, each with three options, there are 27 possible combinations to consider. We can break them down to the following four combinations:

1. All three players choose another to represent them. Say for instance that $P 1$ chooses $P 2$, $P 2$ chooses $P 1$, and $P 3$ also chooses $P 1$. Then the combined probability of this event is $a_{1} f_{2} \cdot a_{2} f_{1} \cdot a_{3} f_{1}$. We flip a three-sided coin to determine which of the players will be represented. This brings us to round two, and we have already solved for the formulas there, so we write implicitly that the expected payoff vector is $\frac{1}{3}(U B 2 R 1+U B 1 R 2+U B 1 R 3)$.
2. Two players choose to be represented while the third does not. An example of this type of occurrence is if $P 1$ wants to go solo, but $P 2$ accepts $P 1$, and $P 3$ accepts $P 2$. The probability is then $n_{1} \cdot a_{2} f_{1} \cdot a_{3} f_{2}$, and as before the expected payoff (with outcome determined by a two-sided coin-toss) is $\frac{1}{2}$ ($\left.U B 1 R 2+U B 2 R 3\right)$.
3. Only one player accepts another as a representative, and the other two decline. Say players $P 1$ and $P 3$ choose not to be represented while $P 2$ accepts $P 1$. The probability is $n_{1} \cdot a_{2} f_{1} \cdot n_{3}$ and the payoff is simply $U B 1 R 2$.
4. No player accepts another. The probability of this event is $n_{1} \cdot n_{2} \cdot n_{3}$. With probability ε_{5}, the payoff vector is $(0,0,0)$. Alternatively, the game is allowed to repeat, with expected payoff $\left(1-\varepsilon_{5}\right) U$. Here, as before, we have U on both sides of the equation and must later solve for it.

Now we can write down all 27 possible occurrences and their expected payoffs:

$$
\left.\begin{array}{rl}
U= & n_{1} \cdot a_{2} f_{1} \cdot a_{3} f_{1} \cdot \frac{1}{2}(U B 1 R 2+U B 1 R 3) \tag{10}\\
& +n_{1} \cdot a_{2} f_{1} \cdot a_{3} f_{2} \cdot \frac{1}{2}(U B 1 R 2+U B 2 R 3) \\
& +n_{1} \cdot a_{2} f_{1} \cdot n_{3} \cdot U B 1 R 2+n_{1} \cdot n_{2} \cdot a_{3} f_{1} \cdot U B 1 R 3 \\
& +n_{1} \cdot n_{2} \cdot a_{3} f_{2} \cdot U B 2 R 3+n_{1} \cdot a_{2} f_{3} \cdot n_{3} \cdot U B 3 R 2 \\
& +n_{1} \cdot a_{2} f_{3} \cdot a_{3} f_{1} \cdot \frac{1}{2}(U B 3 R 2+U B 1 R 3) \\
& +n_{1} \cdot a_{2} f_{3} \cdot a_{3} f_{2} \cdot \frac{1}{2}(U B 3 R 2+U B 2 R 3) \\
& +a_{1} f_{2} \cdot a_{2} f_{1} \cdot a_{3} f_{1} \cdot \frac{1}{3}(U B 2 R 1+U B 1 R 2+U B 1 R 3) \\
& +a_{1} f_{2} \cdot a_{2} f_{1} \cdot a_{3} f_{2} \cdot \frac{1}{3}(U B 2 R 1+U B 1 R 2+U B 2 R 3) \\
& +a_{1} f_{2} \cdot a_{2} f_{1} \cdot n_{3} \cdot \frac{1}{2}(U B 2 R 1+U B 1 R 2) \\
& +a_{1} f_{2} \cdot n_{2} \cdot a_{3} f_{1} \cdot \frac{1}{2}(U B 2 R 1+U B 1 R 3) \\
& +a_{1} f_{2} \cdot n_{2} \cdot a_{3} f_{2} \cdot \frac{1}{2}(U B 2 R 1+U B 2 R 3) \\
& +a_{1} f_{2} \cdot n_{2} \cdot n_{3} \cdot U B 2 R 1+a_{1} f_{3} \cdot n_{2} \cdot n_{3} \cdot U B 3 R 1 \\
& +a_{1} f_{2} \cdot a_{2} f_{3} \cdot a_{3} f_{1} \cdot \frac{1}{3}(U B 2 R 1+U B 3 R 2+U B 1 R 3) \\
& +a_{1} f_{2} \cdot a_{2} f_{3} \cdot a_{3} f_{2} \cdot \frac{1}{3}(U B 2 R 1+U B 3 R 2+U B 2 R 3) \\
& +n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(\left(1-f_{3}\right) \cdot U+\varepsilon_{4} \cdot 0\right) . \\
& +a_{1} f_{2} \cdot a_{2} f_{3} \cdot n_{3} \cdot \frac{1}{2}(U B 2 R 1+U B 3 R 2) \\
& +a_{1} f_{3} \cdot a_{2} f_{3} \cdot a_{3} f_{1} \cdot \frac{1}{2}(U B 3 R 1+U B 3 R 2) \\
& +a_{1} f_{3} \cdot a_{2} f_{1} \cdot a_{3} f_{1} \cdot \frac{1}{3}(U B 3 R 1+U B 1 R 2+U B 1 R 3) \\
& +a_{1} f_{3} \cdot a_{2} f_{1} \cdot a_{3} f_{2} \cdot \frac{1}{3}(U B 3 R 1+U B 1 R 2+U B 2 R 3) \\
& +a_{1} f_{3} \cdot a_{2} f_{1} \cdot n_{3} \cdot \frac{1}{2}(U B 3 R 1+U B 1 R 2) \\
& +a_{1} f_{3} \cdot n_{2} \cdot a_{3} f_{1} \cdot \frac{1}{2}(U B 3 R 1+U B 1 R 3) \\
& +f_{3} \cdot n_{2} \cdot a_{3} f_{2} \cdot \frac{1}{2}(U B 3 R 1+U B 2 R 3) \\
& (U B 1+U B 3 R 2+U B 1 R 3) \\
& (U B 3)+U B 3 R 2+U B 2 R 3) \\
& (U B B B 1
\end{array}\right)
$$

Since we have U on both sides of the equation, we must again solve for it explicitly on one side.

So we have that the numerator of U is everything as it appears above except the last line, and the denominator is $\left(1-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right)$.

It will be useful to consider another way to derive the same formula: to find the probabilities, $p\{i R j\}$. Say that in the second stage, $P 2$ leads $P 1$ and $P 3$ is on his own. The payoff vector corresponding to this is $U B 2 R 1$, which we have already solved for in (9). The event of $P 2$ representing $P 1$ has probability $p\{2 R 1\}$, and can come about in one of five scenarios:

1. $P 1$ is the only player that wants to be represented; the other two decline. This has probability $a_{1} f_{2} \cdot n_{2} \cdot n_{3}$.
2. $P 1$ accepts $P 2, P 2$ accepts either $P 1$ or $P 3$, and $P 3$ does not accept. Since $P 1$ must win the two-sided coin toss, the total probability is $\frac{1}{2}\left(a_{1} f_{2} \cdot a_{2} f_{1} \cdot n_{3}+a_{1} f_{2} \cdot a_{2} f_{3} \cdot n_{3}\right)$. Remembering equation (1), we can simplify to: $\frac{1}{2} a_{1} f_{2} \cdot\left(1-n_{2}\right) \cdot n_{3}$.
3. $P 1$ accepts $P 2, P 3$ accepts either $P 1$ or $P 2$, and $P 2$ does not accept anyone. This is symmetric with the previous case, with total probability $\frac{1}{2} a_{1} f_{2} \cdot\left(1-n_{3}\right) \cdot n_{2}$.
4. All three want to be represented, so a three-sided coin toss determines the acceptance. This has probability $\frac{1}{3} a_{1} f_{2}\left(1-n_{2}\right)\left(1-n_{3}\right)$.
5. All three decline to be represented, but are given another chance at round one, during which $P 1$ successfully accepts $P 2$. The probability here is $n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right) \cdot p\{2 R 1\}$.

Summing these together, we get the formula for $p\{2 R 1\}$:

$$
\begin{aligned}
p\{2 R 1\}= & a_{1} f_{2} \cdot n_{2} \cdot n_{3}+\frac{1}{2} a_{1} f_{2} \cdot\left(1-n_{2}\right) \cdot n_{3}+\frac{1}{2} a_{1} f_{2} \cdot\left(1-n_{3}\right) \cdot n_{2} \\
& +\frac{1}{3} a_{1} f_{2}\left(1-n_{2}\right)\left(1-n_{3}\right)+n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right) \cdot p\{2 R 1\}
\end{aligned}
$$

Solving for $p\{2 R 1\}$, we get:

$$
\begin{equation*}
p\{2 R 1\}=\frac{a_{1} f_{2}\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)}{6\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)} \tag{11}
\end{equation*}
$$

Replacing 2 by $i, 1$ by j, and 3 by k, we get the general formula:

$$
\begin{equation*}
p\{i R j\}=\frac{a_{j} f_{i}}{6} \cdot \frac{2+n_{i}+n_{k}+2 n_{i} n_{k}}{1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)} \tag{12}
\end{equation*}
$$

Now we can write the formula for U using only $p\{i R j\}$ and $U B i R j$, both of which we have solved for:

$$
\begin{align*}
U= & p\{1 R 2\} \cdot U B 1 R 2+p\{1 R 3\} \cdot U B 1 R 3+p\{2 R 1\} \cdot U B 2 R 1 \tag{13}\\
& +p\{2 R 3\} \cdot U B 2 R 3+p\{3 R 1\} \cdot U B 3 R 1+p\{3 R 2\} \cdot U B 3 R 2
\end{align*}
$$

3 The Main Model

For each entry, u_{i}, of the total payoff vector, U, we have to solve thirteen equilibrium equations. That's thirty nine strategic parameters in all. For instance, only player $P 1$ is concerned about maximizing u_{1}, and his only strategic variables (the variables which he controls) are $d_{1}, d f_{23}, d_{12}$, $d f_{32}, d_{13}, u_{2} b_{1} r_{23}, u_{3} b_{1} r_{23}, u_{2} b_{1} r_{32}, u_{3} b_{1} r_{32}, u_{2} b_{12} r_{3}, u_{3} b_{12} r_{3}, u_{2} b_{13} r_{2}$, and $u_{3} b_{13} r_{2}$. The derivative of u_{1} with respect to all of these variables must then be set to zero, and the simultaneous solution to all of these equations is exactly the model. (Note: $P 1$ also controls $u_{1} b_{1} r_{23}, u_{1} b_{1} r_{32}$, and so on, but they are dependent on the variables above, since $u_{1} b_{1} r_{23}=1-u_{2} b_{1} r_{23}-u_{3} b_{1} r_{23}$, etc.)

By symmetry, we only need to do this for $P 1$, and for the variables $d_{1}, d f_{23}, d_{12}, u_{2} b_{1} r_{23}, u_{3} b_{1} r_{23}$, $u_{2} b_{12} r_{3}$, and $u_{3} b_{12} r_{3}$. The rest is gotten by permuting the indeces. For variables $d f_{23}$ and d_{12}, we will only need derivatives with $a f_{23}$ and a_{12}, respectively, since these are the only parameters reacting with the d variables.

3.1 Variable d_{1}

So let us first consider the following specific case for $P 1$, the problem of maximizing u_{1} w.r.t. d_{1}. The first entry of the vector equation (13) is:

$$
\begin{align*}
u_{1}= & p\{1 R 2\} \cdot u_{1} b_{1} r_{2}+p\{1 R 3\} \cdot u_{1} b_{1} r_{3}+p\{2 R 1\} \cdot u_{1} b_{2} r_{1} \tag{14}\\
& +p\{2 R 3\} \cdot u_{1} b_{2} r_{3}+p\{3 R 1\} \cdot u_{1} b_{3} r_{1}+p\{3 R 2\} \cdot u_{1} b_{3} r_{2}
\end{align*}
$$

We will need the following derivatives from equation (2):

$$
\begin{align*}
& \frac{\partial A_{1} F_{2}}{\partial d_{1}}=-\frac{A_{1} F_{2}}{\varepsilon_{3}} \tag{15}\\
& \frac{\partial A_{1} F_{3}}{\partial d_{1}}=-\frac{A_{1} F_{3}}{\varepsilon_{3}}
\end{align*}
$$

and from equation (3):

$$
\begin{aligned}
\frac{\partial a_{1} f_{2}}{\partial A_{1} F_{2}} & =\frac{1+A_{1} F_{2}+A_{1} F_{3}-A_{1} F_{2}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}}=\frac{1+A_{1} F_{3}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}} \\
\frac{\partial a_{1} f_{2}}{\partial A_{1} F_{3}} & =\frac{-A_{1} F_{2}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}} \\
\frac{\partial a_{1} f_{3}}{\partial A_{1} F_{2}} & =\frac{-A_{1} F_{3}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}} \\
\frac{\partial a_{1} f_{3}}{\partial A_{1} F_{3}} & =\frac{1+A_{1} F_{2}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}}
\end{aligned}
$$

From here, we get:

$$
\begin{aligned}
\frac{\partial a_{1} f_{2}}{\partial d_{1}} & =\frac{\partial a_{1} f_{2}}{\partial A_{1} F_{2}} \frac{\partial A_{1} F_{2}}{\partial d_{1}}+\frac{\partial a_{1} f_{2}}{\partial A_{1} F_{3}} \frac{\partial A_{1} F_{3}}{\partial d_{1}} \\
& =\frac{1+A_{1} F_{3}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}} \frac{-A_{1} F_{2}}{\varepsilon_{3}}+\frac{A_{1} F_{2}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}} \frac{A_{1} F_{3}}{\varepsilon_{3}} \\
& =\frac{1}{\varepsilon_{3}}\left(\frac{-A_{1} F_{2}}{\left(1+A_{1} F_{2}+A_{1} F_{3}\right)^{2}}\right)=\frac{-1}{\varepsilon_{3}}\left(a_{1} f_{2} \cdot n_{1}\right)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\frac{\partial a_{1} f_{3}}{\partial d_{1}} & =\frac{-1}{\varepsilon_{3}}\left(a_{1} f_{3} \cdot n_{1}\right) \\
\frac{\partial n_{1}}{\partial d_{1}} & =-\left(\frac{\partial a_{1} f_{2}}{\partial d_{1}}+\frac{\partial a_{1} f_{3}}{\partial d_{1}}\right)=\frac{1}{\varepsilon_{3}}\left(\left(1-n_{1}\right) \cdot n_{1}\right)
\end{aligned}
$$

Since $p\{2 R 1\}$ reacts with n_{1}, and $a_{1} f_{2}$ (from (11)), we get:

$$
\begin{aligned}
& \frac{\partial p\{2 R 1\}}{\partial n_{1}}=\frac{a_{1} f_{2} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)}{6\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{2 R 1\}}{\partial a_{1} f_{2}}=\frac{2+n_{2}+n_{3}+2 n_{2} n_{3}}{6\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)}
\end{aligned}
$$

from which we get $p\{3 R 1\}$ by replacing every 2 by a 3 and vice-versa. Then so far we have:

$$
\begin{aligned}
\frac{\partial p\{2 R 1\}}{\partial d_{1}} & =\frac{\partial p\{2 R 1\}}{\partial n_{1}} \frac{\partial n_{1}}{\partial d_{1}}+\frac{\partial p\{2 R 1\}}{\partial a_{1} f_{2}} \frac{\partial a_{1} f_{2}}{\partial d_{1}} \\
& =\frac{\left(a_{1} f_{2} \cdot n_{1}\right)\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)\left(n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}
\end{aligned}
$$

and

$$
\frac{\partial p\{3 R 1\}}{\partial d_{1}}=\frac{\left(a_{1} f_{3} \cdot n_{1}\right)\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)\left(n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}
$$

Other $p\{\cdot\}$ variables only react with n_{1}, so we get:

$$
\begin{aligned}
\frac{\partial p\{1 R 2\}}{\partial n_{1}} & =\frac{a_{2} f_{1}\left(1+n_{3}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(2+n_{3}\right)\right)\right)}{6\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{1 R 2\}}{\partial d_{1}} & =\frac{\partial p\{1 R 2\}}{\partial n_{1}} \frac{\partial n_{1}}{\partial d_{1}} \\
& =\frac{a_{2} f_{1}\left(1+n_{3}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(2+n_{3}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{1 R 3\}}{\partial d_{1}} & =\frac{a_{3} f_{1}\left(1+n_{2}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(2+n_{2}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{2 R 3\}}{\partial d_{1}} & =\frac{a_{3} f_{2}\left(1+n_{2}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(2+n_{2}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{3 R 2\}}{\partial d_{1}} & =\frac{a_{2} f_{3}\left(1+n_{3}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(2+n_{3}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}
\end{aligned}
$$

Combining these derivatives with equation (14), we get:

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial d_{1}}= & \frac{\partial p\{1 R 2\}}{\partial d_{1}} \cdot u_{1} b_{1} r_{2}+\frac{\partial p\{1 R 3\}}{\partial d_{1}} \cdot u_{1} b_{1} r_{3}+\frac{\partial p\{2 R 1\}}{\partial d_{1}} \cdot u_{1} b_{2} r_{1} \\
& +\frac{\partial p\{2 R 3\}}{\partial d_{1}} \cdot u_{1} b_{2} r_{3}+\frac{\partial p\{3 R 1\}}{\partial d_{1}} \cdot u_{1} b_{3} r_{1}+\frac{\partial p\{3 R 2\}}{\partial d_{1}} \cdot u_{1} b_{3} r_{2} \\
= & \frac{a_{2} f_{1}\left(1+n_{3}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(2+n_{3}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \cdot u_{1} b_{1} r_{2} \\
& +\frac{a_{3} f_{1}\left(1+n_{2}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(2+n_{2}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \cdot u_{1} b_{1} r_{3} \\
& +\frac{\left(a_{1} f_{2} \cdot n_{1}\right)\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)\left(n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \cdot u_{1} b_{2} r_{1} \\
& +\frac{a_{3} f_{2}\left(1+n_{2}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(2+n_{2}\right)\right)\right)\left(\left(1-n_{1}\right) \cdot n_{1}\right)}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \cdot u_{1} b_{2} r_{3} \\
& +\frac{\left(a_{1} f_{3} \cdot n_{1}\right)\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)\left(n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \cdot u_{1} b_{3} r_{2}
\end{aligned}
$$

And factoring $\frac{n_{1}}{6 \cdot \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}$ out of everything and setting equal to zero, we get:

$$
\begin{align*}
0= & \left(1+n_{3}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(2+n_{3}\right)\right)\right)\left(1-n_{1}\right)\left(a_{2} f_{1} \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right) \tag{16}\\
& +\left(1+n_{2}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(2+n_{2}\right)\right)\right)\left(1-n_{1}\right)\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}+a_{3} f_{2} \cdot u_{1} b_{2} r_{3}\right) \\
& +\left(2+n_{2}+n_{3}+2 n_{2} n_{3}\right)\left(n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right)\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right) .
\end{align*}
$$

3.2 Variable $d f_{23}$

Now let us consider the problem of maximizing u_{1} w.r.t. $d f_{23}$. As mentioned earlier, $\frac{\partial u_{1}}{\partial d f_{23}}=$ $\frac{\partial u_{1}}{\partial a f_{23}} \frac{\partial a f_{23}}{\partial d f_{23}}$, so it suffices to consider just the equation with $a f_{23}$ and factor out $\frac{\partial a f_{23}}{\partial d f_{23}}=\frac{-a f_{23}}{\varepsilon_{3}}$. So for $a f_{23}$, the reactions to consider are with $u_{1} b_{2} r_{3}$ and $u_{3} b_{2} r_{3}$, which in turn react with $a_{3} f_{1}, a_{3} f_{2}$, and n_{3}, and then all of the $p\{i R j\}$ variables.

Then we will have:

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial a f_{23}}= & p\{2 R 3\} \cdot \frac{\partial u_{1} b_{2} r_{3}}{\partial a f_{23}} \\
& +\frac{\partial p\{1 R 2\}}{\partial a f_{23}} \cdot u_{1} b_{1} r_{2}+\frac{\partial p\{1 R 3\}}{\partial a f_{23}} \cdot u_{1} b_{1} r_{3}+\frac{\partial p\{2 R 1\}}{\partial a f_{23}} \cdot u_{1} b_{2} r_{1} \\
& +\frac{\partial p\{2 R 3\}}{\partial a f_{23}} \cdot u_{1} b_{2} r_{3}+\frac{\partial p\{3 R 1\}}{\partial a f_{23}} \cdot u_{1} b_{3} r_{1}+\frac{\partial p\{3 R 2\}}{\partial a f_{23}} \cdot u_{1} b_{3} r_{2}
\end{aligned}
$$

But for each of the $p\{i R j\}, \frac{\partial p\{i R j\}}{\partial a f_{23}}=\frac{\partial p\{i R j\}}{\partial u_{3} b_{2} r_{3}} \frac{\partial u_{3} b_{2} r_{3}}{\partial a f_{23}}$, and so we calculate:

$$
\begin{aligned}
\frac{\partial p\{1 R 2\}}{\partial u_{3} b_{2} r_{3}} & =\frac{-a_{2} f_{1}\left(a_{3} f_{2}\right) n_{3}\left(1+n_{1}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{2 R 1\}}{\partial u_{3} b_{2} r_{3}} & =\frac{-a_{1} f_{2}\left(a_{3} f_{2}\right) n_{3}\left(1+n_{2}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{2}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{3 R 1\}}{\partial u_{3} b_{2} r_{3}} & =\frac{-a_{1} f_{3}\left(a_{3} f_{2}\right) n_{3}\left(1+n_{2}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{2}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{3 R 2\}}{\partial u_{3} b_{2} r_{3}} & =\frac{-a_{2} f_{3}\left(a_{3} f_{2}\right) n_{3}\left(1+n_{1}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{1 R 3\}}{\partial u_{3} b_{2} r_{3}} & =\frac{-a_{3} f_{1}\left(a_{3} f_{2}\right)\left(2+n_{1}+n_{2}+2 n_{1} n_{2}\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
\frac{\partial p\{2 R 3\}}{\partial u_{3} b_{2} r_{3}} & =\frac{a_{3} f_{2}\left(2+n_{1}+n_{2}+2 n_{1} n_{2}\right)\left(1-a_{3} f_{2}-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}
\end{aligned}
$$

We also need:

$$
\begin{aligned}
& \frac{\partial u_{3} b_{2} r_{3}}{\partial a f_{23}}=\frac{\begin{array}{c}
u_{3} b_{1} r_{23}\left(a_{23}\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)-2\right)\right) \\
+u_{3} b_{23} r_{1}\left(2-a_{23}\right)\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)\right)
\end{array}}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)^{2}} \\
& \frac{\partial u_{1} b_{2} r_{3}}{\partial a f_{23}}=\frac{-\left(1-b_{23} \cdot \varepsilon_{5}\right.}{u_{1} b_{1} r_{23}\left(a_{23}\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)-2\right)\right)} \begin{array}{l}
+u_{1} b_{23} r_{1}\left(2-a_{23}\right)\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)\right) \\
2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)^{2}
\end{array},
\end{aligned}
$$

for the final form (pulling out $\frac{a_{3} f_{2}}{6 \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2} \cdot 2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)^{2}}$):

$$
\begin{aligned}
0= & \varepsilon_{3}\left(2+n_{2}+n_{1}+2 n_{1} \cdot n_{2}\right)\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right) \\
& \cdot\left(u_{1} b_{1} r_{23}\left(a_{23}\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)-2\right)\right)+u_{1} b_{23} r_{1}\left(2-a_{23}\right)\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)\right)\right) \\
& -\binom{u_{3} b_{1} r_{23}\left(a_{23}\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)-2\right)\right)}{+u_{3} b_{23} r_{1}\left(2-a_{23}\right)\left(\varepsilon_{5}+a_{23}\left(1-\varepsilon_{5}\right)\right)-\left(1-a_{23}\right) \cdot b_{1} \cdot \varepsilon_{5}} \\
& \cdot\binom{n_{3}\binom{\left(1+n_{1}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)\left(a_{2} f_{1} \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right)}{+\left(1+n_{2}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{2}+2\right)\right)\right)\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right)}}{+\left(2+n_{1}+n_{2}+2 n_{1} n_{2}\right)\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}-\left(1-a_{3} f_{2}-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right) \cdot u_{1} b_{2} r_{3}\right)}
\end{aligned}
$$

3.3 Variable d_{12}

Now let us consider the problem of maximizing u_{1} w.r.t. d_{12}. Again it will suffice to consider just the equation with a_{12} and factor out $\frac{\partial a_{12}}{\partial d_{12}}=\frac{-a_{12}}{\varepsilon_{3}}$. So for a_{12}, the reactions to consider are with $u_{1} b_{1} r_{2}$ and $u_{2} b_{1} r_{2}$, which in turn react with $a_{2} f_{1}, a_{2} f_{3}$, and n_{2}, and then all of the $p\{i R j\}$ variables.

Then we will have:

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial a_{12}}= & p\{1 R 2\} \cdot \frac{\partial u_{1} b_{1} r_{2}}{\partial a_{12}} \\
& +\frac{\partial p\{1 R 2\}}{\partial a_{12}} \cdot u_{1} b_{1} r_{2}+\frac{\partial p\{1 R 3\}}{\partial a_{12}} \cdot u_{1} b_{1} r_{3}+\frac{\partial p\{2 R 1\}}{\partial a_{12}} \cdot u_{1} b_{2} r_{1} \\
& +\frac{\partial p\{2 R 3\}}{\partial a_{12}} \cdot u_{1} b_{2} r_{3}+\frac{\partial p\{3 R 1\}}{\partial a_{12}} \cdot u_{1} b_{3} r_{1}+\frac{\partial p\{3 R 2\}}{\partial a_{12}} \cdot u_{1} b_{3} r_{2}
\end{aligned}
$$

But for each of the $p\{i R j\}, \frac{\partial p\{i R j\}}{\partial a_{12}}=\frac{\partial p\{i R j\}}{\partial u_{2} b_{1} r_{2}} \frac{\partial u_{2} b_{1} r_{2}}{\partial a_{12}}$, and so we calculate:

$$
\begin{aligned}
& \frac{\partial p\{1 R 2\}}{\partial u_{2} b_{1} r_{2}}=\frac{a_{2} f_{1}\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)\left(1-a_{2} f_{1}-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{3 R 2\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{2} f_{3}\right)\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{1 R 3\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{3} f_{1}\right) n_{2}\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{2 R 1\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{1} f_{2}\right) n_{2}\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{2 R 3\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{3} f_{2}\right) n_{2}\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{3 R 1\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{1} f_{3}\right) n_{2}\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}
\end{aligned}
$$

We also need:

$$
\begin{aligned}
& u_{1} b_{12} r_{3}\left(a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)-2\right) \\
& +u_{1} b_{3} r_{12}\left(2-a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)\right) \\
& \frac{\partial u_{1} b_{1} r_{2}}{\partial a_{12}}=\frac{+\left(1-a f_{12}\right) \cdot b_{3} \cdot \varepsilon_{5}}{2\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right)^{2}}, \\
& u_{2} b_{12} r_{3}\left(a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)-2\right) \\
& +u_{2} b_{3} r_{12}\left(2-a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)\right) \\
& \frac{\partial u_{2} b_{1} r_{2}}{\partial a_{12}}=\frac{+\left(1-a f_{12}\right) \cdot b_{3} \cdot \varepsilon_{5}}{2\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right)^{2}},
\end{aligned}
$$

for the final form (pulling out $\left.\frac{a_{2} f_{1}}{6 \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2} \cdot 2\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right)^{2}}\right)$:

$$
\begin{aligned}
0= & \varepsilon_{3}\left(2+n_{3}+n_{1}+2 n_{1} \cdot n_{3}\right)\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right) \\
& \cdot\binom{u_{1} b_{12} r_{3}\left(a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)-2\right)}{+u_{1} b_{3} r_{12}\left(2-a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)\right)+\left(1-a f_{12}\right) \cdot b_{3} \cdot \varepsilon_{5}} \\
& -\binom{u_{2} b_{12} r_{3}\left(a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)-2\right)}{+u_{2} b_{3} r_{12}\left(2-a f_{12}\right)\left(\varepsilon_{5}+a f_{12}\left(1-\varepsilon_{5}\right)\right)+\left(1-a f_{12}\right) \cdot b_{3} \cdot \varepsilon_{5}} \\
& \cdot\binom{\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)\left(\left(a_{2} f_{1}+n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right) \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right)}{+n_{2}\binom{\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}+a_{3} f_{2} \cdot u_{1} b_{2} r_{3}\right)}{+\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right)}}
\end{aligned}
$$

3.4 Variable $u_{2} b_{12} r_{3}$

The next equation we will consider is the derivative of u_{1} with respect to $u_{2} b_{12} r_{3}$, since this is a strategic parameter controlled by $P 1$. For this, we will need to calculate the corresponding partial derivatives. The only new reactions needed are those with $n_{2}, a_{2} f_{3}, a_{2} f_{1}, u_{2} b_{1} r_{2}$, and $u_{1} b_{1} r_{2}$, and we will use formulas derived in the previous section for the full derivative. In other words, once we know $\frac{\partial a_{2} f_{1}}{\partial u_{2} b_{12} r_{3}}=\frac{\partial a_{2} f_{1}}{\partial u_{2} b_{1} r_{2}} \cdot \frac{\partial u_{2} b_{1} r_{2}}{\partial u_{2} b_{12} r_{3}}, \frac{\partial a_{2} f_{3}}{\partial u_{2} b_{12} r_{3}}, \frac{\partial n_{2}}{\partial u_{2} b_{12} r_{3}}$, and $\frac{\partial u_{1} b_{1} r_{2}}{\partial u_{2} b_{12} r_{3}}$, we will simply have $\frac{\partial p_{i} f_{j}}{\partial u_{2} b_{12} r_{3}}=\frac{\partial p_{i} f_{j}}{\partial a_{j} f_{i}} \cdot \frac{\partial a_{j} f_{i}}{\partial u_{2} b_{12} r_{3}}+\frac{\partial p_{i} f_{j}}{\partial n_{2}} \cdot \frac{\partial n_{2}}{\partial u_{2} b_{12} r_{3}}$, and:

$$
\begin{equation*}
\frac{\partial u_{1}}{\partial u_{2} b_{12} r_{3}}=p\{1 R 2\} \cdot \frac{\partial u_{1} b_{1} r_{2}}{\partial u_{2} b_{12} r_{3}} \tag{17}
\end{equation*}
$$

$$
+\frac{\partial p\{1 R 2\}}{\partial u_{2} b_{12} r_{3}} \cdot u_{1} b_{1} r_{2}+\frac{\partial p\{1 R 3\}}{\partial u_{2} b_{12} r_{3}} \cdot u_{1} b_{1} r_{3}+\frac{\partial p\{2 R 1\}}{\partial u_{2} b_{12} r_{3}} \cdot u_{1} b_{2} r_{1}
$$

$$
+\frac{\partial p\{2 R 3\}}{\partial u_{2} b_{12} r_{3}} \cdot u_{1} b_{2} r_{3}+\frac{\partial p\{3 R 1\}}{\partial u_{2} b_{12} r_{3}} \cdot u_{1} b_{3} r_{1}+\frac{\partial p\{3 R 2\}}{\partial u_{2} b_{12} r_{3}} \cdot u_{1} b_{3} r_{2}
$$

We will need the following derivatives from equation:

$$
\frac{\partial A_{2} F_{1}}{\partial u_{2} b_{1} r_{2}}=\frac{A_{2} F_{1}}{\varepsilon_{3}}
$$

and

$$
\begin{aligned}
\frac{\partial a_{2} f_{1}}{\partial A_{2} F_{1}} & =\frac{1+A_{2} F_{3}}{\left(1+A_{2} F_{1}+A_{2} F_{3}\right)^{2}} \\
\frac{\partial a_{2} f_{3}}{\partial A_{2} F_{1}} & =\frac{-A_{2} F_{3}}{\left(1+A_{2} F_{1}+A_{2} F_{3}\right)^{2}}
\end{aligned}
$$

From here, we get:

$$
\begin{aligned}
\frac{\partial a_{2} f_{1}}{\partial u_{2} b_{1} r_{2}} & =\frac{\partial a_{2} f_{1}}{\partial A_{2} F_{1}} \frac{\partial A_{2} F_{1}}{\partial u_{2} b_{1} r_{2}} \\
& =\frac{1+A_{2} F_{3}}{\left(1+A_{2} F_{1}+A_{2} F_{3}\right)^{2}} \frac{A_{2} F_{1}}{\varepsilon_{3}} \\
& =\frac{a_{2} f_{1}\left(1-a_{2} f_{1}\right)}{\varepsilon_{3}}
\end{aligned}
$$

and similarly

$$
\begin{aligned}
\frac{\partial a_{2} f_{3}}{\partial u_{2} b_{1} r_{2}} & =\frac{\partial a_{2} f_{3}}{\partial A_{2} F_{1}} \frac{\partial A_{2} F_{1}}{\partial u_{2} b_{1} r_{2}}=-\frac{a_{2} f_{3} \cdot a_{2} f_{1}}{\varepsilon_{3}} \\
\frac{\partial n_{2}}{\partial u_{2} b_{1} r_{2}} & =-\left(\frac{\partial a_{2} f_{1}}{\partial u_{2} b_{1} r_{2}}+\frac{\partial a_{2} f_{3}}{\partial u_{2} b_{1} r_{2}}\right)=-\frac{a_{2} f_{1}\left(n_{2}\right)}{\varepsilon_{3}}
\end{aligned}
$$

Then as before, we have:

$$
\begin{aligned}
& \frac{\partial p\{1 R 2\}}{\partial u_{2} b_{1} r_{2}}= \frac{\partial p\{1 R 2\}}{\partial n_{2}} \frac{\partial n_{2}}{\partial u_{2} b_{1} r_{2}}+\frac{\partial p\{1 R 2\}}{\partial a_{2} f_{1}} \frac{\partial a_{2} f_{1}}{\partial u_{2} b_{1} r_{2}} \\
&= \frac{a_{2} f_{1}\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)\left(1-a_{2} f_{1}-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}, \\
& \frac{\partial p\{3 R 2\}}{\partial u_{2} b_{1} r_{2}}= \frac{-a_{2} f_{1}\left(a_{2} f_{3}\right)\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}, \\
& \frac{\partial p\{1 R 3\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{3} f_{1}\right) n_{2}\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{2 R 1\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{1} f_{2}\right) n_{2}\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{2 R 3\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{3} f_{2}\right) n_{2}\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \\
& \frac{\partial p\{3 R 1\}}{\partial u_{2} b_{1} r_{2}}=\frac{-a_{2} f_{1}\left(a_{1} f_{3}\right) n_{2}\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)}{6 \cdot \varepsilon_{3} \cdot\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}}
\end{aligned}
$$

Combining these derivatives with equation (17), and pulling out a factor of $\frac{-a_{2} f_{1}}{6 \varepsilon_{3}\left(1-\left(1-\varepsilon_{4}\right) n_{1} \cdot n_{2} \cdot n_{3}\right)^{2}} \frac{\left(2-a_{12}\right)\left(a f_{12}\right)}{2\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)(1)\right.}$ we get:

$$
\begin{aligned}
0= & \varepsilon_{3}\left(2+n_{1}+n_{3}+2 n_{1} \cdot n_{3}\right)\left(1-\left(1-\varepsilon_{4}\right) n_{1} \cdot n_{2} \cdot n_{3}\right) \\
& +\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)\left(\left(a_{2} f_{1}+n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right) \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right) \\
& +n_{2}\binom{\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}+a_{3} f_{2} \cdot u_{1} b_{2} r_{3}\right)}{+\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right)} .
\end{aligned}
$$

3.5 Variable $u_{3} b_{12} r_{3}$

The next equation we will consider is the derivative of u_{1} with respect to $u_{3} b_{12} r_{3}$. The lower level reactions occur with $a f_{12}, u_{2} b_{1} r_{2}$ and $u_{1} b_{1} r_{2}$. So, we find:

$$
\begin{aligned}
\frac{\partial a f_{12}}{\partial u_{3} b_{12} r_{3}}= & \frac{a f_{12}\left(1-a f_{12}\right)}{\varepsilon_{3}}, \\
\frac{\partial u_{1} b_{1} r_{2}}{\partial u_{3} b_{12} r_{3}}= & \frac{a f 12}{2 \varepsilon_{3}\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right)^{2}} \\
& \cdot\left(\begin{array}{c}
\varepsilon_{3}\left(a_{12}-2\right)\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right) \\
\left(u_{1} b_{12} r_{3}\right)\left(2-a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)\right) \\
\left.+\left(1-a f_{12}\right)\binom{12}{+u_{1} b_{3} r_{12}\left(a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)-2\right)+\left(a_{12}-1\right) \cdot b_{3} \cdot \varepsilon_{5}}\right) \\
\frac{\partial u_{2} b_{1} r_{2}}{\partial a f_{12}}= \\
\frac{\partial u_{2} b_{1} r_{2}}{\partial u_{3} b_{12} r_{3}}= \\
\left.\frac{\left(u_{2} b_{12} r_{3}\right)\left(2-a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)\right)}{\partial a f_{12}} \begin{array}{c}
+u_{2} b_{3} r_{12}\left(a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)-2\right)+\left(a_{12}-1\right) \cdot b_{3} \cdot \varepsilon_{5}
\end{array}\right) \\
2\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right)^{2} \\
\partial u_{3} b_{12} r_{3}
\end{array}\right.
\end{aligned}
$$

Then we have the full form:

$$
\begin{aligned}
& \frac{\partial u_{1}}{\partial u_{3} b_{12} r_{3}}=p\{1 R 2\} \cdot \frac{\partial u_{1} b_{1} r_{2}}{\partial u_{3} b_{12} r_{3}}
\end{aligned}
$$

and pulling out $\frac{a_{2} f_{1}}{6 \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \frac{a f_{12}}{2 \varepsilon_{3}\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right)^{2}}$, we get:

$$
\begin{aligned}
0= & \varepsilon_{3}\left(2+n_{1}+n_{3}+2 n_{1} \cdot n_{3}\right)\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right) \\
& \cdot\left(\begin{array}{c}
\varepsilon_{3}\left(a_{12}-2\right)\left(1-\left(1-a_{12}\right)\left(1-a f_{12}\right)\left(1-\varepsilon_{5}\right)\right) \\
\left(u_{1} b_{12} r_{3}\right)\left(2-a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)\right) \\
\left.+\left(1-a f_{12}\right)\binom{12}{+u_{1} b_{3} r_{12}\left(a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)-2\right)+\left(a_{12}-1\right) \cdot b_{3} \cdot \varepsilon_{5}}\right) \\
\\
\\
-\binom{\left(u_{2} b_{12} r_{3}\right)\left(2-a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)\right)}{+u_{2} b_{3} r_{12}\left(a_{12}\right)\left(\varepsilon_{5}+a_{12}\left(1-\varepsilon_{5}\right)-2\right)+\left(a_{12}-1\right) \cdot b_{3} \cdot \varepsilon_{5}}\left(1-a f_{12}\right) \\
\\
\end{array}\right)\binom{\left(2+n_{1}+n_{3}+2 n_{1} n_{3}\right)\left(\left(a_{2} f_{1}+n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)-1\right) \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right)}{+n_{2}\binom{\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}+a_{3} f_{2} \cdot u_{1} b_{2} r_{3}\right)\left(1+n_{1}\left(2+n_{3}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right.}{+\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right)\left(1+n_{3}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{3}+2\right)\right)\right)}},
\end{aligned}
$$

3.6 Variable $u_{2} b_{1} r_{23}$

The next equation we will consider is the derivative of u_{1} with respect to $u_{2} b_{1} r_{23}$. The lower level reactions occur with $a_{23}, a_{3} f_{1}, a_{3} f_{2}, n_{3}, u_{2} b_{2} r_{3}$ and $u_{1} b_{2} r_{3}$. So, we find:

$$
\begin{aligned}
\frac{\partial a_{23}}{\partial u_{2} b_{1} r_{23}}= & \frac{a_{23}\left(1-a_{23}\right)}{\varepsilon_{3}}, \\
\frac{\partial a_{3} f_{1}}{\partial u_{3} b_{2} r_{3}}= & -\frac{a_{3} f_{1} \cdot a_{3} f_{2}}{\varepsilon_{3}}, \\
\frac{\partial a_{3} f_{2}}{\partial u_{3} b_{2} r_{3}}= & \frac{a_{3} f_{2}\left(1-a_{3} f_{2}\right)}{\varepsilon_{3}} \\
\frac{\partial u_{1} b_{2} r_{3}}{\partial u_{2} b_{1} r_{23}}= & -\frac{\partial u_{1} b_{2} r_{3}}{\partial u_{1} b_{1} r_{23}}+\frac{\partial u_{1} b_{2} r_{3}}{\partial a_{23}} \frac{\partial a_{23}}{\partial u_{2} b_{1} r_{23}} \\
& \quad \begin{aligned}
&\left(1-a_{23}\right)\binom{\left(u_{1} b_{1} r_{23}\right)\left(2-a f_{23}\right)\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)\right)}{+\left(u_{1} b_{23} r_{1}\right) a f_{23}\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)-2\right)} \\
&= a_{23} \frac{-\varepsilon_{3}\left(2-a f_{23}\right)\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)^{2} \varepsilon_{3}}, \\
& \frac{u_{3} b_{1} r_{23}\left(2-a f_{23}\right)\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)\right)}{\partial u_{3} b_{2} r_{3}}= a_{23} \frac{\left(1-a_{23}\right)\left(\begin{array}{r}
+u_{3} b_{23} r_{1}\left(a f_{23}\right)\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)-2\right)-b_{1} \cdot \varepsilon_{5}\left(1-a f_{23}\right)
\end{array}\right)}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)^{2} \varepsilon_{3}}
\end{aligned} \\
&
\end{aligned}
$$

Then we pull out $\frac{a_{3} f_{2}}{6 \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \frac{a_{23}}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)^{2} \varepsilon_{3}}$, we get:

$$
\begin{aligned}
0= & \varepsilon_{3}\left(2+n_{1}+n_{2}+2 n_{1} \cdot n_{2}\right)\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right) \\
& \cdot\left(\left(1-a_{23}\right)\binom{\left(u_{1} b_{1} r_{23}\right)\left(2-a f_{23}\right)\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)\right)}{+\left(u_{1} b_{23} r_{1}\right) a f_{23}\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)-2\right)}-\varepsilon_{3}\left(2-a f_{23}\right)\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)\right) \\
& -\left(\left(1-a_{23}\right)\binom{u_{3} b_{1} r_{23}\left(2-a f_{23}\right)\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)\right)}{+u_{3} b_{23} r_{1}\left(a f_{23}\right)\left(\varepsilon_{5}+a f_{23}\left(1-\varepsilon_{5}\right)-2\right)-b_{1} \cdot \varepsilon_{5}\left(1-a f_{23}\right)}\right) \\
& \cdot\binom{n_{3}\binom{\left(1+n_{1}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)\left(a_{2} f_{1} \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right)}{+\left(1+n_{2}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{2}+2\right)\right)\right)\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right)}}{+\left(2+n_{1}+n_{2}+2 n_{1} n_{2}\right)\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}-\left(1-a_{3} f_{2}-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right) \cdot u_{1} b_{2} r_{3}\right)}
\end{aligned}
$$

3.7 Variable $u_{3} b_{1} r_{23}$

The last equation we will consider is the derivative of u_{1} with respect to $u_{3} b_{1} r_{23}$. The lower level reactions occur with $a_{3} f_{1}, a_{3} f_{2}, n_{3}, u_{3} b_{2} r_{3}$ and $u_{1} b_{2} r_{3}$. So, we find:

$$
\begin{aligned}
\frac{\partial a_{3} f_{1}}{\partial u_{3} b_{2} r_{3}} & =-\frac{a_{3} f_{1} \cdot a_{3} f_{2}}{\varepsilon_{3}}, \\
\frac{\partial a_{3} f_{2}}{\partial u_{3} b_{2} r_{3}} & =\frac{a_{3} f_{2}\left(1-a_{3} f_{2}\right)}{\varepsilon_{3}} \\
\frac{\partial u_{1} b_{2} r_{3}}{\partial u_{3} b_{1} r_{23}} & =-\frac{\partial u_{1} b_{2} r_{3}}{\partial u_{1} b_{1} r_{23}}=\frac{-a_{23}\left(2-a f_{23}\right)}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)}, \\
\frac{\partial u_{3} b_{2} r_{3}}{\partial u_{3} b_{1} r_{23}} & =a_{23} \frac{\left(2-a f_{23}\right)}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)}
\end{aligned}
$$

Then we pull out $\frac{-a_{3} f_{2}}{6 \varepsilon_{3}\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right)^{2}} \frac{a_{23}\left(2-a f_{23}\right)}{2\left(1-\left(1-a f_{23}\right)\left(1-a_{23}\right)\left(1-\varepsilon_{5}\right)\right)}$, we get:

$$
\begin{aligned}
0= & \varepsilon_{3}\left(2+n_{1}+n_{2}+2 n_{1} \cdot n_{2}\right)\left(1-n_{1} \cdot n_{2} \cdot n_{3} \cdot\left(1-\varepsilon_{4}\right)\right) \\
& +n_{3}\binom{\left(1+n_{1}\left(2+n_{2}\left(1-\varepsilon_{4}\right)\left(n_{1}+2\right)\right)\right)\left(a_{2} f_{1} \cdot u_{1} b_{1} r_{2}+a_{2} f_{3} \cdot u_{1} b_{3} r_{2}\right)}{+\left(1+n_{2}\left(2+n_{1}\left(1-\varepsilon_{4}\right)\left(n_{2}+2\right)\right)\right)\left(a_{1} f_{2} \cdot u_{1} b_{2} r_{1}+a_{1} f_{3} \cdot u_{1} b_{3} r_{1}\right)} \\
& +\left(2+n_{1}+n_{2}+2 n_{1} n_{2}\right)\left(a_{3} f_{1} \cdot u_{1} b_{1} r_{3}-\left(1-a_{3} f_{2}-n_{1} \cdot n_{2} \cdot n_{3}\left(1-\varepsilon_{4}\right)\right) \cdot u_{1} b_{2} r_{3}\right) .
\end{aligned}
$$

