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ABSTRACT OF THE DISSERTATION

Low-lying Geodesics in an Arithmetic Hyperbolic

Three-Manifold

by KATIE LYNN MCKEON

Dissertation Director: Alex Kontorovich

We examine closed geodesics in the quotient of hyperbolic three space by the discrete

group of isometries SL(2,Z[i]). There is a correspondence between closed geodesics

in the manifold, the complex continued fractions originally studied by Hurwitz, and

binary quadratic forms over the Gaussian integers. According to this correspondence,

a geodesic is called fundamental if the associated binary quadratic form is. Using

techniques from sieve theory, symbolic dynamics, and the theory of expander graphs,

we show the existence of a compact set in the manifold containing infinitely many

fundamental geodesics.
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Chapter 1

Introduction

1.1 Closed Geodesics on the Modular Surface

In [Duk88], Duke showed that closed geodesics on the modular surface equidistribute

when grouped by discriminant, see also [CU04]. In [ELM+09] Einsiedler, Lindenstrauss,

Michel, and Venkatesh gave a modern treatment of Linnik’s approach to this problem

using the ergodic method. A key step is ruling out other potential weak-∗ limits of

closed geodesics. This raises the basic question on what other weak-∗ limits could

arise. Because the geodesic flow is a shift map (see Chapter 3) this question is trivial

without more restrictions. They asked whether there is an infinite collection of closed

geodesics having fundamental discriminant and being trapped in a compact subset of

the modular surface. That is they don’t visit the cusp, or are “low-lying.” Bourgain

and Kontorovich [BK17] showed an abundance of fundamental low-lying geodesics on

the modular surface, answering the question above in a quantitative sense.

We will attack the corresponding problem in the Picard 3-manifold SL2(Z[i])\H3.

However, the solution is not as simple as applying the machinery from [BK17] to a

‘thin semi-group’ with well-established growth properties. For one, continued fractions

in the complex plane are much more complicated to work with versus simple continued

fractions on the real line. In particular, our symbolic encoding of closed geodesics does

not display a semigroup structure because the shift map is restricted. We also have

to develop in this setting much of the machinery (Chapters 3-6) which was already

available to [BK17] for the modular surface.
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1.2 The Main Theorem

We must establish some terminology before stating the main result. Consider the upper

half space model of hyperbolic three-space:

H3 = {z + tj : z ∈ C, t ∈ R+}

equipped with the line element

ds2 = (dz2
1 + dz2

2 + dt2)/t2

where an element

a b

c d

 in the group of isometries G = PSL2C acts by

z + tj 7→ (az + b)(cz + d)

|cz + d|2 + |c|2t2
+

(
t

|cz + d|2 + |c|2t2

)
j.

When H3 is embedded as a subset of Hamilton’s quaternions, this expression simplifies

as z + tj 7→ (a(z + tj) + b)(c(z + tj) + d)−1. Since G extends to a simply transitive

action on the frame bundle FH3, we can identify an element in G with where it moves

some representative reference frame. We can also identify H3 ↔ G/SU(2) and

T 1H3 ↔ G/SO(2).

Geodesic flow on T 1H3 under this identification is represented by right-multiplication

by the one parameter group generated by at =

et 0

0 e−t

. There is a correspondence

between conjugacy classes of primitive hyperbolic matrices in Γ = SL2(Z[i]) and closed

geodesics.

To restrict to “low-lying” geodesics,we only consider those in the standard funda-

mental domain lying in a certain region {z + tj : t < R}. See for example, the figure

below which depicts the standard fundamental domain for Γ\H3 and the cutoff t < 2.5.

Once we have developed a symbolic encoding of closed geodesics, it is trivial to

manufacture infinitely many geodesics which are low-lying by enumerating periodic

points (with restricted orbits) of a map analogous to the Gauss map for continued
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Figure 1.1: Height Cutoff t < 2.5

fractions. Adding the condition that geodesics be fundamental places the requirement

that the geodesic g, as a loxodromic element of SL2(Z[i]), has tr2(g)− 4 which satisfies

certain conditions (see Section 2.0.5), a sufficient one being that it is square-free. If

CD is the set of distinct geodesics with discriminant D and N(·) denotes the norm of

a Gaussian integer, then we will show the following quantitative result:

Theorem 1. For any ε > 0, there is a compact region Y (ε) ⊂ Γ\H3 and a set D(ε) of

fundamental discriminants such that

#{D ∈ D(ε) : N(D) < X} �ε X
1−ε, X →∞

and for all D ∈ D(ε),

#{γ ∈ CD : γ ⊂ Y (ε)} > |CD|1−ε.

Of course, qualitatively, this solves the problem of producing infinitely many fun-

damental low-lying geodesics in the Picard 3-manifold.

1.3 Strategy of the Proof

Our three main tools come from symbolic dynamics, expander graphs, and sieve theory.

1.3.1 Thermodynamic Formalism and Renewal Theorems

After converting the study of closed geodesics to periodic points of an analogue of the

‘Gauss map’, we are led to study the dynamics of a subshift of finite type. In particular,
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define

ΣR := {(x1, x2, . . .) : xi ∈ PR, Axi,Ai+1 = 1 for all i}

where PR is some finite alphabet (see Chapter 3), and A is a PR × PR binary matrix

conveying transition rules (i.e. Ax,y = 1 if x can be followed by y and Ax,y = 0

otherwise). The shift map σ on ΣR is defined as σ((x1, x2, . . .)) = (x2, x3, . . .). Choosing

the appropriate PR and A following the work of [Pol94], gives an essentially one-to-one

correspondence between closed geodesics lying in a compact set (corresponding to the

choice of R) and periodic points of ΣR under σ. Denote the set of closed geodesics

associated to (ΣR, σ) via this correspondence as ΓR ⊂ SL2(Z[i]) and

BX :=


a b

c d

 ∈ SL2(Z[i]) : ||a||2 + ||b||2 + ||c||2 + ||d||2 < X2

 .

The methods of Lalley in [Lal89] are straightforward to apply to our situation and lead

to the following:

Theorem 2. For fixed R ≥ 3, there is a δR ∈ (0, 2) so that

#(ΓR ∩BX) � X2δR

as X →∞.

It will be crucial in a later argument that the set above is large.

Theorem 3. The growth parameter given by Theorem 2 satisfies

lim
R→∞

δR → 2.

Finally, we will need local information about closed geodesics. This is where ex-

pander graphs are used crucially. We follow the work of [BGS11] together with [BKM].

For q ∈ Z[i], set SL2(q) = SL2(Z[i])/(q).

Theorem 4. For each R > 8, there is some absolute spectral gap ΘR > 0 and absolute

constants cR, CR > 0 such that for all square-free q ∈ Z[i] and ω ∈ SL2(q) we have the

estimate∣∣∣∣#{g ∈ ΓR ∩BX : g ≡ ω mod q} − #(ΓR ∩BX)

|SL2(q)|

∣∣∣∣�R #(ΓR ∩BX)E(q,X)
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as X →∞, where

E(q,X) =


e−cR

√
logX N(q) < CR logX

N(q)CRX−ΘR N(q) > CR logX

.

1.3.2 A First Attempt via the Affine Sieve

Theorem 4 allows us to follow the affine sieve procedure (see [BGS10], [SGS13], or

[Kon14]) up to a level of distribution Xα where the exponent αR = ΘR/C − o(1) and

show for sufficiently large δR that

#{g ∈ ΓR ∩BX : p a Gaussian prime, p|(tr2(g)− 4) =⇒ N(p) > XαR} � X2δR−o(1).

Since tr2(g)− 4 factors as (tr(g) + 2)(tr(g)− 2), any Gaussian prime dividing tr2(g)− 4

must divide one of its linear factors. This fact allows us to conclude from the “almost

prime” estimate above that

#{g ∈ ΓR ∩BX : (tr2(g)− 4) not square-free} � X4−αR .

See the proof of Theorem 24 on page 72 for details.

Comparing the two estimates, we would have our main result if only we could show

that

2δR > 4−ΘR/C.

It seems that making δR near 2 (as in Theorem 3) suffices. However, the shared depen-

dence of δR and ΘR on R cannot at this time be decoupled, so this attack fails, and we

must use something more than expansion.

1.3.3 Beyond Expansion

To have stronger control on the exponent of distribution, we create bilinear (in fact,

multilinear) forms, replacing ΓR∩BX by a specially constructed subset Π, see Chapter 7.

We analyze the set

#{ω ∈ Π : tr2(ω)− 4 ≡ 0 mod q}

via abelian harmonic analysis (on Z[i]/(q)). The characters of small order up to some

intermediate level Q0 can be handled by expansion. The characters of larger order are
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now dealt with by appealing to bilinear forms techniques, namely Cauchy-Schwarz and

estimating exponential sums. Our methods allow us to sieve up to the absolute level of

distribution α = 1/16− ε from which Theorem 1 follows.
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Chapter 2

Closed Geodesics and Dirichlet Forms

We express the upper half space model of hyperbolic 3-space as a subset of Hamilton’s

quaternions, i.e.

H3 = {z + tj : z ∈ C, t ∈ R+}

where i2 = j2 = −1 and ij = −ji. The group PSL2(C) acts on H3 bya b

c d

 · (z + tj) := (a(z + tj) + b)(c(z + tj) + d)−1.

The inverse above should be interpreted as the Hamiltonian inverse. Considering the

action of PSL2(C) on the boundary Ĉ gives a correspondence with Möbius transfor-

mations.

2.0.1 The Picard Group PSL2(Z[i])

Inside of G = PSL2(C), we have the discrete subgroup Γ = PSL2(Z[i]), sometimes

referred to as the Picard group. We can express

Γ =

〈1 1

0 1

 ,

1 i

0 1

 ,

0 −1

1 0

 ,

−i 0

0 i

〉

and this allows us to write the fundamental Dirichlet domain for the quotient Γ\H3 as

F := {(z, t)|Re(z) ∈ [−1/2, 1/2], Im(z) ∈ [0, 1/2], |z|2 + t2 > 1}.
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Figure 2.1: Fundamental Domain for SL2(Z[i])\H3

2.0.2 Closed Geodesics

Write

M =


eiθ 0

0 e−iθ

 : θ ∈ [0, 2π)

 .

A geodesic which is closed in Γ\SL2(C)/M is identified by (ΓgM)al = (ΓgM). Since

al commutes with M , this translates to

gMal = AgM

for some A ∈ Γ, g ∈ G. More explicitly, we may write

A = galmg
−1

= g

el/2 0

0 e−l/2

eiθ/2 0

0 e−iθ/2

 g−1

for some m ∈M .

2.0.3 Properties of Closed Geodesics

• Trace and Eigenvalues:

By the equation above, we infer that A is diagonalized by g with eigenvalues

exp(±(l/2 + iθ/2)). Following Beardon, we call A hyperbolic if tr2(A) ∈ [4,∞)

and strictly loxodromic if tr2(A) 6∈ [0,∞). The term loxodromic (referring to
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transformations with 2 fixed points in Ĉ) encompasses both. The trace of A is

tr(A) = 2 cosh(l/2 + iθ/2).

On the other hand, we can express the eigenvalue as

el/2+iθ/2 =
tr(A) +

√
tr2(A)− 4

2
,

and this gives us a way to determine the closed geodesic associated to an arbitrary

loxodromic transformation in PSL2(Z[i]).

• Length and Primitivity:

The length of the geodesic is given by l. Note that any powers of A satisfy

Ak = g(alm)kg−1, which would suggest that their length is kl. However, Ak =

(galmg
−1) · · · (galmg−1) indicates that we are traversing the same closed geodesic

k times. So, we call A primitive when it is not a power of another element in the

Picard group.

• Equivalent geodesics:

Technically, a closed geodesic is an element of the quotient SL2(Z[i])\SL2(C)/M

satisfying (ΓgM)al = (ΓgM). We chose a particular representative A, but any

conjugation BAB−1 where B ∈ Γ would give the same geodesic. Hence, geodesics

are equivalent if they are in the same Γ conjugacy class.

• Fixed points, visual points:

The loxodromic transformation A has two fixed points in C which can be found

by solving

z =
az + b

cz + d
.

In other words, the fixed points are roots of the (homogenized) binary quadratic

form QA(1, z) = cz2 + (d− a)z − b with coefficients in Z[i]. Solving this, we get

α =
(a− d) +

√
tr2(A)− 4

2c
, α =

(a− d)−
√

tr2(A)− 4

2c
.

On the other hand, if we have g we can calculate

lim
l→∞

gal.j = α.
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A similar statement (as l → −∞) gives the reverse direction of the geodesic.

These points α, α are referred to as the visual points of the geodesic.

2.0.4 Dirichlet Forms

Many of the observations above suggest a correspondence between closed geodesics and

binary quadratic forms with coefficients in Z[i], also known as Dirichlet forms. We have

A =

a b

c d

 7→ QA(x, y) = cx2 + (d− a)xy − by2

modulo the greatest common divisor of c, d − a, and b and up to choice of unit. This

correspondence is explained further in [Sar83]. We associate the discriminant of the

Dirichlet form DA = tr2(A)− 4 with the closed geodesic corresponding to A.

2.0.5 Fundamental Discriminants for Dirichlet Forms

Note that a discriminant D of a Dirichlet form must be a square mod 4 and hence

D mod 4 ∈ {0, 1,−1, 2i}. Moreover, each D ∈ Z[i] with a square residue mod 4 is

a discriminant of some form. We call a discriminant D fundamental if it cannot be

expressed as D = q2D0 where q is a non-unit and D0 is also a discriminant. This is

equivalent to another other common definition which states that D is fundamental if any

form Q(x, y) = ax2+bxy+cy2 with discriminant D must be primitive (i.e. (a, b, c) = 1.)

Note that this also agrees with the work of Hilbert, i.e. that D is fundamental if and

only if |D| is the relative discriminant of the extension of Q(i, α) over Q(i).

A geodesic is fundamental if its associated discriminant is fundamental. We will

sieve down to geodesics with square-free discriminant, only catching the D = ±1 mod 4

case.
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Chapter 3

A Symbolic Encoding of Geodesics

We now describe the map analyzed by Pollicott in [Pol94]. Denote a circle of radius

1 about a center z as C(z). Consider the region X in H2 exterior to the three circles

C(i), C(1), and C(−1) where we have the removed vertical lines {z : =(z) = k/2 : k ∈ Z}

and horizontal lines {z : <z = k/2 : k ∈ N}. The region X is shown in blue in the figure

below.

Figure 3.1: The Fundamental Region X

For each z ∈ X there is a unique closest (in Euclidean distance) Gaussian integer,

which we denote bze. The map f̂ will move z to the unit square centered about the

origin by first subtracting bze. If =(z − bze) < 0, then f rotates about the origin by π.

Finally, the involution ω 7→ −1/ω is performed to return to X . Formally, we define f̂

as

f̂(z) =


(−1)
z−bze =(z) > =(bze)

1
z−bze =(z) < =(bze)

.

Define S : z 7→ −1/z and f := S ◦ f̂ ◦ S on S(X ). Note that S(X ), the image of

X under S, is contained within {x + iy : |x| < 1/2, 0 < y < 1/2}. Pollicott proves the
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following:

Theorem 5. There is a bijection between closed geodesics and the periodic points of f .

Proof. Note that each closed geodesic has a unique representative with visual point in

S(X ). The action of f can be seen as a fractional linear transformation in SL2(Z[i])

extends naturally to the geodesic and gives an SL2(Z[i]) conjugate. If the orbit of the

visual point is periodic then the geodesic is SL2(Z[i])-equivalent to itself.

Furthermore, [Pol94] shows that (X , f) admits a Markov partition. This will allow

us to study the system via a simplified encoding. The naive choice of partition of X

into connected regions between the grid lines is almost correct. We must introduce two

more circles, C(1+ i) and C(−1+ i) and separate each region intersecting the boundary

of either of the circles. The figure below illustrates the partition which we denote P.

Each connected region after removing C(1 + i), C(−1 + i) and the 1/2-spaced grid is a

part in the partition.

Figure 3.2: The Parts in P

In Table 3.1, we pictorially reproduce the proof given by Pollicott that P is a Markov

partition for (X, f̂). We will divide into cases depending on the closest Gaussian integer.

Due to symmetry, we only show Gaussian integers z with <(z) ≥ 0.
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Table 3.1: Subshift Rules

For each part shaded pink, observe that its image shown in

green under f̂ is a union of parts in P. The blue

region within S(X ) is the result of the translation

of the pink region before the involution map S is applied.

Parts surrounding 2

blank

blank

Parts surrounding 1 + i

blank

blank

Parts surrounding 2 + i

blank
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blank

Parts surrounding 2i

blank

blank

Parts surrounding 1 + 2i

blank
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blank

Parts surrounding 2 + 2i

blank

blank

Parts surrounding z ∈ Z, with |z| > 2

blank

blank

Parts surrounding z ∈ Z[i] with either <z or =z greater than 2

blank
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For each part ρ ∈ S(P), we associate a distinct label p. The set of all labels is the

alphabet for our shift map. Since S(P) is a Markov partition, (Σ, σ) gives a symbolic

representation of (S(X ), f) where

Σ := {(p1, p2, . . .) : pi ↔ ρi ∈ S(P), f(ρi) ⊃ ρi+1}

and σ is the shift operator, i.e. σ(p1, p2, p3, . . .) = (p2, p3, . . .). More precisely, for any

finite admissible word a = (p1 . . . pn) (meaning a occurs as a subword of some α ∈ Σ)

we define the cylinder set Ca as

Ca =
n⋂
k=1

f−k(ρk).

Since |f ′(z)| ≤ 1
2 , we have that the diameter of Cα is at most 1

2n . We also have

C(p1,...,pn) ⊂ C(p1,...,pn−1). Therefore the map

π : Σ→ S(X )

(p1, p2, . . .) 7→
∞⋂
k=1

C(p1,...,pk)

is well-defined. Since the interiors of distinct cylinders of length n (i.e. the cylinder

defined on a word of length n) are disjoint, π is one-to-one. The image of π is all of

S(X ) up to a set of Lebesgue measure 0 (the orbit of the grid under f must be removed)

and the following diagram commutes:

Σ Σ

S(X ) S(X )

σ

π π

f
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In particular, we have a bijection between the periodic points of σ and the periodic

points of f . This allows us to study closed geodesics by analyzing the system (Σ, σ).

From the correspondence between periodic orbits in (S(X ), f) and closed geodesics,

we can measure how close a geodesic is to the cusp in SL2(Z[i])\SL2(C) by determining

the minimum distance from origin to a point in the orbit of the associated periodic

point. So define PR ⊂ P by only allowing parts from P if they lie completely inside

the ball of radius R centered at the origin. Recall that the parts P were defined for the

conjugate system (X , f̂) and so the images of parts in PR under S fall outside a small

ball centered at the origin. The figure below has the parts included in P4 shaded.

Figure 3.3: Parts in P4

Our corresponding symbolic encoding is

ΣR := {(p1, p2, . . .) : pi ↔ ρi ∈ PR, f(ρi) ⊃ ρi+1}.

The new system (ΣR, σ) is now a subshift of finite type as its alphabet is finite. The

problem of counting low-lying geodesics translates into a problem of counting periodic

points of σ in ΣR.
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Chapter 4

Counting Geodesics via Thermodynamic Formalism

The asymptotic for geodesics derived in this chapter is a straightforward application of

the work of Lalley in [Lal89]. We summarize the ideas which give rise to the method

in the next section towards an asymptotic for geodesics counted by congruence classes.

For a ∈ Σ, we define the distortion function τ(a) := log |f ′(π(a))|. The N -th

Birkhoff sum for the distortion function is then SNτ(a) :=
∑N−1

k=0 τ(σka) where S0(a) =

0. If σN (a) = a and in particular a is a visual point corresponding to a closed geodesic,

then SNτ(a) = −l where l is the length of the geodesic. This gives some indication

that the following function will be useful in counting geodesics. For T > 0 and a ∈ ΣR

Lalley’s renewal function is defined as

N(T, a) :=
∞∑
k=0

∑
b:σk(b)=a

g(y)1{Skτ(b)≤T}.

Partitioning the sum by the preimage σ−1(a), we arrive at the following recursive rela-

tion, known as the renewal equation

N(T, a) = g(a)1{a≤T} +
∑

b:σ(b)=a

N(T − τ(b), b).

In order to analyze the renewal function, we are led to study its Laplace transform and

a certain transfer operator.

For a continuous function f defined on ΣR and 0 < ρ < 1, we define

varn(f) := sup{|f(a)− f(b)| : ai = bi for all 0 ≤ i ≤ n},

|f |ρ := sup
n≥0

varn(f)

ρn
.

Then Fρ := {f : |f |ρ < ∞} is the space of Hölder continuous functions which is a

Banach space with norm || · ||ρ = | · |ρ + || · ||∞. The transfer operator, depending on



19

s ∈ C, acts on Fρ as follows:

Lsf(a) :=
∑
b

σ(b)=a

esτ(b)f(b).

First note that Lsf(a) is a bounded linear operator. Additionally, when s ∈ R the

coefficients in the sum are all positive. For real s, would like to compare the spectrum

of Ls to that of an positive matrix. In particular, we would like to apply an analogue

of the Perron-Frobenius theorem. In order to do so, we must establish a few more

properties of the system (ΣR, σ).

Recall that a matrix A is irreducible if for each position (i, j) there is some power of

A such that the (i, j)-th entry is positive. In analogy, we say that (ΣR, σ) is irreducible

if for each two states p1, p2 ∈ PR there is some finite admissible word beginning with

p1 and ending in p2.

Lemma 1. (ΣR, σ) is irreducible as long as R ≥ 4.

Proof. By our definition of ΣR, a finite subword of the form (pi1 , pi2 , . . . , pin) must

satisfy f̂(pik) ⊃ pik+1
. In other words, we must show that for each part in p ∈ PR that

there is some k such that PR ⊂ f̂n(p).

One may recall from the diagrams in the previous section that for any part p ∈ PR,

the image under f̂ contains at least one of the following regions (1)− (8) : Each region

1 2
3 4

5 6

7 8

Figure 4.1: The Main 8 Regions

contains at least one square part. The image of a square part under f̂ is either the
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union of the even regions or the odd regions. In either case, the next iterate of f̂ is the

union of all 8 regions. Hence PR ⊂ f̂3(p) for any p.

A state p ∈ PR is periodic of period k if any finite admissible word beginning and

ending in p must have length divisible by k. The period of the system (ΣR, σ) is the

greatest common factor of the periods of all of its states and a system is said to be

aperiodic if this greatest common factor is 1.

Lemma 2. (ΣR, σ) is aperiodic as long as R ≥ 4.

Proof. Since we already established irreducibility, we only need to show that one state is

aperiodic. Take the square part to the left of 3, i.e. p = {x+iy : x ∈ (2.5, 3), y ∈ (0, .5)}.

Its image under f̂ is the union of the even regions (refer to the previous figure) and

hence p ⊂ f̂(p). Therefore, the orbit of a point in p may return to p after any number

of iterates of f̂ .

4.1 Properties of the Spectrum of Ls

We are now in a position to cite Ruelle’s Perron-Frobenius theorem (see [PP90] for

proof):

Theorem 6. For s ∈ R the spectrum of Ls has the following properties:

1. Ls has a simple maximal positive eigenvalue λs with corresponding eigenfunction

hs which can be chosen to be positive.

2. The remainder of the spectrum is contained in a disc of radius less than λs.

3. There is a unique probability measure µs on ΣR such that L∗sµs = λsµs.

4. 1
λns
Lns v → hs

∫
vdµs uniformly for all continuous v if hs is normalized so that∫

hsdµs = 1.

Consider Ls as a family in s ∈ R and define the pressure functional as P (s) = log λs.

The pressure is increasing in s and there is a unique solution s = δR to P (s) = 0. Since

δR is featured in our main asymptotic, it will be necessary to determine the dependence

of δR on R in a later section. Our next step is to consider the family Ls for s ∈ C−R.
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Theorem 7. For s ∈ C−R, the spectrum of Ls is contained in a disc centered at zero

of radius λ<s (the maximal eigenvalue of L<s).

Proof. We summarize the proof provided by Lalley in section 11 of [Lal89].

There are two cases: either τ is lattice in which case the spectral radius of Ls is

strictly smaller than the radius on the real axis or it is nonlattice in which case Ls

has spectral radius equal to λ<s at regularly spaced intervals along the vertical line

<z = <s. See Lalley for the precise definition of a lattice function. In order to show

that τ is non-lattice we relate it to a function known to be non-lattice.

τ is cohomologous to g, a height function on suspension of restricted geodesic flow.

It suffices to show that for periodic x ∈ Σ of period n, i.e. σn(x) = x, we have

Snτ(x) = Sng(x). If k is the period of x, we will show that both nth Birkhoff sums

give n/k times the length of the closed geodesic associated with x:

tn(M) = dH(j,M.j)− dH(j, σ(M).j)

= dH(j,M.j)− dH(j, j)

= dH(j, galg−1.j)

= dH(g.j, gal.j) = l.

On the other hand, M also corresponds to a mobius function m. Say α is the fixed

point of m.

m′(α) =
1

(cα+ d)2
=

1

(c(el/2 − d)/c+ d)2
= e−l.

So log |m′(α)| = τn(α) = l.

If g is lattice then the suspension flow is not mixing for any invariant measure, but

[Rud82] proves otherwise.

4.2 A Renewal Theorem for the Counting Function N(a,X)

Perturbation estimates (|Ls−Lz| for |s−z| < ε) imply that the eigenvalue map s 7→ λs,

the lead eigenfunction map s 7→ hs and the invariant measure map s 7→ µs are all holo-

morphic functions in a small neighborhood of δR. This leads to the local decomposition
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(1−Ls)−1 = hs
1−λsµs + (1−L′s)−1 where (1−L′s)−1 is a holomorphic family of bounded

operators. The first term in the local decomposition about δR contributes the main

term in Lalley’s estimate:

Theorem 8. For any a ∈ ΣR,

N(T, a) = hδR(a)eTδR + o(eTδR).

Proof. We summarize the proof, ignoring issues of convergence which are addressed

in section of 8 of Lalley. First, define the following Laplace transform of the renewal

function

F (s, a) :=

∫ ∞
−∞

eTsN(T, a)dT

and input the renewal equation to get

F (s, a) =

∫ ∞
0

g(a)eTsdT +
∑

b:σ(b)=b

∫ ∞
−∞

eTsN(T − τ(b), b)dT

=
g(a)

1− es
+

∑
b:σ(b)=b

∫ ∞
−∞

eTse−sτ(b)N(T, b)dT

=
g(a)

1− es
+ LsF (s, a).

So I−Ls applied to the Laplace transform of the renewal function gives g(a)(1−es)−1.

Now it is clear how information about the spectrum of Ls yields information about the

renewal function. In particular, where the resolvent exists we have

(1− es)−1(I − Ls)−1g(a) = F (s, a).

Theorems 6 and 7 and the decomposition of (1−Ls)−1 in a neighborhood of δR imply

F (s, a) =
C(a)

z
+G(s, a)

where G(s, a) is holomorphic in <(s) ≥ δR. Integrating a smoothed version of F (s, a)

along a vertical line <s > δR and pulling the contour to δR we get that the pole in

F (s, a) contributes the main term

e−TδN(T, a)→ C(a)

as T →∞.
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4.3 An Asymptotic for Closed Geodesics

Finally, we relate dynamics on (ΣR, σ) to a geodesic count. Define the set of finite

admissible words (plus the empty word ∅) as

Σ∗ = {∅} ∪ {(p1, . . . , pn) : pi ↔ ρi ∈ PR, f(ρi) ⊃ ρi+1}.

There is a bijection between aperiodic words in Σ∗ and closed geodesics. Specifically, to

a closed geodesic we associate the element in Σ∗R that corresponds to the period of an

orbit under σ. A periodic word in Σ∗ corresponds to the a geodesic traversed multiple

times. We define τ∗(a) = d(j, gaj) − d(j, gσ(a)j) where d(P, P ) denotes hyperbolic

distance between any two points in H3 and ga ∈ SL2(Z[i]) is the local definition of f

restricted to Ca. The identity 2 cosh d(j, g.j) = ||g||2 (see [EGM13] for a proof specific

to H3) will eventually lead us to the final counts for matrices in a norm ball. The

shift operator extends in a natural way to act on Σ∗ however we need to resolve the

ambiguity of σk for words of length less than k:

σ(p1, p2, . . . , pn) = (p2, . . . pn)

σ(pi) = ∅

σ(∅) = ∅.

We are now ready to define the finite version of the renewal function

N∗(T, a) :=

∞∑
k=0

∑
b:σk(b)=a

b6=∅

g(y)1{Snτ∗(b)≤T}.

N∗(T, a) satisfies a renewal equation similar to N(T, a) and so we are tempted to treat

the finite renewal function analogously. However, finding an appropriate Banach space

of functions for the transfer operators L∗s to act on is elusive.

In order to model Σ∗R after ΣR we introduce a new state 0 and for any (p1, . . . , pk) ∈

Σ∗R append an infinite tail of 0’s to achieve an infinite word. The empty word maps to

the infinite string of zeros and the action of σ is well-defined between the finite model of

Σ∗ and the infinite one. The space Fρ(Σ∗R∪ΣR) of Hölder continuous functions satisfies

the same properties (with the same norm) as previously. However, the addition of the
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new ‘0’-state means that the system (Σ∗R ∪ ΣR, σ) is no longer irreducible and hence

Ruelle’s Perron-Frobenius theorem does not immediately apply to the spectrum of the

transfer operators defined on Fρ(Σ∗R ∪ ΣR). Since we are only after an asymptotic for

N∗(T, a) and long words in Σ∗R may be approximated reasonably well (in the product

topology) by words in ΣR, we can use what we have already shown about the transfer

operators on Fρ(ΣR) to prove the following:

Theorem 9. If h∗s is the leading eigenfunction of L∗s then

N∗(T, a) = h∗δR(a)eTδR + o(eTδR).

Proof. Our first claim is that for a ∈ Σ∗R and b ∈ ΣR which are in the same N -cylinder

in Σ∗R ∪ ΣR (i.e. ai = bi for 1 ≤ i ≤ N) and for k � N

Skτ
∗(a) = Skτ(b) +O(2−N+k)

Let a ∈ ΣR be the periodic word with period a1, . . . aN . We claim that Skτ
∗(a) =

Skτ(a). Recall from the proof of Theorem 7 that for any geodesic with period c ∈ Σ∗R,

Slτ
∗(c) = Slτ(c where l is the length of c. We can also write

Skτ
∗(a) = SNτ

∗(a)− SN−kτ∗(σk(a))

= SNτ(a)− SN−kτ(σk(a))

=
(
Skτ(a) + SN−kτ(σk(a))

)
− SN−kτ(σk(a))

= Skτ(a)

On the other hand, by bounded distortion (see Lemma 3 which is more easily understood

with the notation in the next section) Skτ(b) = Skτ(a) +O2−N+k
. This proves the first

claim.

From the previous claim it follows that for a ∈ Σ∗R and b ∈ ΣR which are in the

same N -cylinder and k � N

N(T − 2−N+k, b) ≤ N∗(T, a) ≤ N(T + 2−N+k, b)

for g ≡ 1.
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Then iterating the renewal equation N times, one has

N∗(T, a) =
∑

b′:σN (b′)=a
σN−1(b′) 6=∅

N∗(T − SNτ∗(b′), b′)

+
N−1∑
k=1

∑
b:σk(b)=a

σN−1(b)6=∅

g(b)1{SN τ∗(b)≤T} + g(a)1{T≥0}.

As T →∞ second line does not change. For each summand in the first line we can find

b′ ∈ ΣR to sandwich between the two terms

N(T ± 2−N+k − SNτ∗(b′), b) � h(b)e(T−SN τ∗(b′))δRe±δR2−N+k

Send N →∞ and use the continuity of h to get the statement of the theorem.

If hs is the leading eigenfunction for Ls the transfer operator in (ΣR, σ) then the

leading eigenfunction h∗s of L∗s agrees with hs on ΣR. This is Lemma 6.1 of Lalley.

The theorem follows from a sandwiching argument of the renewal function N∗(T, x)

between N(T, x) with appropriate parameters. A similar argument will appear in the

next section.

Combining the asymptotic for N∗(
√

2 coshT , ∅) with the identity 2 cosh d(j, gj) =

||g||2 yields Theorem 2 which we restate here:

Theorem 10. For fixed R ≥ 3, there is a δR ∈ (0, 2) so that

#(ΓR ∩BX) � X2δR

as X →∞.
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Chapter 5

Counting Geodesics with Congruence Conditions

Here we combine the work of Bourgain, Gamburd, Sarnak in [BGS11] with the expan-

sion idea of Bourgain, Kontorovich, Magee in [BKM] to estimate

#{g ∈ ΓR ∩BX : g ≡ ω mod q}

for some ω ∈ SL2(q) (recall that SL2(q) := SL2(Z[i])/(q)).

In order to detect congruence classes we introduce a new space of functions Fρ(ΣR×

SL2(q)). If f , defined on ΣR × SL2(q), is continuous in each variable, we can define

||f ||∞ := sup
x

 ∑
g∈SL2(q)

|f(x, g)|2
1/2

,

varnf := sup


 ∑
g∈SL2(q)

|f(a, g)− f(b, g)|2
1/2

: ai = bi for all 0 ≤ i ≤ n

 ,

|f |ρ := sup
n

varnf

ρn
.

Then Fρ(ΣR × SL2(q)) = {f ∈ C(ΣR × SL2(q)) : ||f ||∞ < ∞, |f |ρ < ∞} with norm

|| · ||ρ = || · ||∞ + | · |ρ is a Banach space.

Before defining the action of the transfer operators on this space, we must explain

how the action of (ΣR, σ) extends to SL2(q). Recall the definition of f̂ in (X , f̂) :

f̂(z) =


−1

z−bze =(z) > =(bze)

1
z−bze =(z) < =(bze)

.

Locally, i.e. when restricting to the interior of a part p ∈ P, we may represent the

action of f̂ as a fractional linear transformation:

f̂ |p =

0 −1

1 0

−i 0

0 i

j1 −bze

0 1
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where j ∈ {0, 1} reflects whether rotation is necessary for the image to be in the upper

half-plane. Moreover, the inverse of f̂ |p is well-defined and represented by a fractional

linear transformation in SL2(Z[i]).

We now introduce some notation and operations on ΣR in order to describe the

preimages of an element under σ. Let

Γn := {(p1, . . . , pn) : pi ↔ ρi ∈ PR, f(ρi) ⊃ ρi+1}

be the set of admissible words of length n. We denote concatenation of two finite words

with ‖, i.e. for a = (a1, . . . , an) ∈ Γn and b = (b1, . . . , bk) ∈ Γk,

a‖b = (a1, . . . , an, b1, . . . , bk)

If an and b1 satisfy the subshift rules, then we say the concatenation a‖b ∈ Γn+k is

an admissible one. Concatenations of the form a‖b are also well-defined for b ∈ ΣR

as long as a is a finite word. In order to describe finite words which give admissible

concatenations we set

Γnx y := {a ∈ Γn : x‖a‖y is admissible},

Γny := {a ∈ Γn : a‖y is admissible}.

While y may be an infinite word, we must have x a finite word for the definition above.

For a ∈ ΣR, we now write σ−1(a) = {b‖a : b ∈ Γ1
a} and for each b|a ∈ σ−1(a)

denote the inverse branch of f at b‖a as gb. In other words, gb ∈ SL2(Z[i]) satisfies

gb(π(a)) = π(b‖a) and f(b‖a) = π−1 ◦ g−1
b ◦ π(b‖a) = a.

We are now ready to describe the congruence transfer operators:

Mzf(x, g) =
∑
a∈Γ1,x

ezτ(a‖x)f(a‖x; gag).

5.1 Bounding Mz in the Supremum Norm

We will exhibit cancellation in the iterates of the transfer operator

MN
z f(x, g) =

∑
a∈ΓNx

ezSN τ
(a‖x)f(a‖x; gag)
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by treating the prefix and suffix of a ∈ ΓNx separately. Let N = M + R and for any

b ∈ ΓM define

µb :=
∑
a∈ ΓRb x

ezSN τ(b‖a‖x)δπq(ga) =
∑
a∈ ΓRb x

ezSM τ(b‖a‖x)ezSRτ(a‖x)δπq(ga)

where πq : SL2(Z[i])→ SL2(q). In order to decouple M and R, we need a lemma which

reassures us that the value of ezSM τ(b‖a‖x) does not change much for fixed b and varying

a. We first establish a property of the system (S(X )R, f) called bounded distortion.

Lemma 3. For fixed R there is some C = C(R) so that for any p ∈ PR

sup
z∈p

∣∣∣∣f ′′f ′ (z)
∣∣∣∣ < C.

Proof. From the definition

f(z) = (−1)j
(

1

z
− b1ez

)
we have that both |f ′(z)| = 1

|z|2 and |f ′′(z)| = 1
|z|3 . Since we have fixed R all of the

parts in PR lie in an annulus (bounded away from 0), the bound follows.

Bounded distortion leads to the following estimate for Birkhoff sums

Lemma 4. For any two x, x0 ∈ ΣR and b ∈ ΓMx ∩ ΓMx0 we have

SMτ(b‖x) = SMτ(b‖x0)(1 +O(1)).

Proof. For 0 ≤ k ≤M both π(σk(b‖x)) and π(σk(b‖x0)) are in the same cylinder Cσk(b)

which has diameter at most 1
2k

.

The Mean Value Theorem combined with bounded distortion yields

|SM (τ(b‖x))− SM (τ(b‖x0))| ≤
M∑
k=0

|τ(σk(b‖x))− τ(σk(b‖x0))|

≤
M∑
k=0

log |f ′(π(σk(b‖x)))| − log |f ′(π(σk(b‖x0)))|

≤
M∑
k=0

C|π(σk(b‖x))− π(σk(b‖x0))|

≤ C
∞∑
k=0

1

2k
< C ′.
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Returning to our estimation of the measure µb, we pick an arbitrary a0 ∈ ΓRb x and

the lemma gives

µb ≤ CezSM τ(b‖a0‖x)
∑
a∈ ΓRb x

ezSRτ(a‖x)δπq(ga).

5.1.1 Expressing µb as a convolution

Now for a divisor L of R, break each a ∈ ΓRb x into subwords of length L, i.e. write each

a = a1‖ · · · ‖ar where l(ai) = L. Then

∑
a∈ ΓRb x

ezSRτ(a‖x)δπq(ga) =
∑
a∈ ΓRb x

ezSLτ(a1‖a2‖···‖ar‖x)ezSLτ(a2‖a3‖···‖ar‖x) · · · ezSLτ(ar‖x)δπq(ga).

For each ai, we will further decompose the word as a long prefix (of length L−4) and

a short suffix. Write ai = a
(L−4)
i ‖a(4)

i . In order to separate dependence on the suffixes,

we replace ezSLτ(ai‖ai+1‖···‖ar‖x) with ezSLτ(ai‖a
(L−4)
i+1 ‖xi) where xi ∈ ΣR is some arbitrary

admissible choice based on a
(L−4)
i+1 . Since we will be replacing many of the weights in

µb, we need to sharpen the estimate from the previous lemma. In particular, since

π(σk(ai‖a(L−4)
i+1 ‖xi)) and π(σk(ai‖ai+1‖ · · · ‖x) are in the same cylinder C

σk(ai‖a
(L−4)
i+1 )

for 0 ≤ k ≤ 2L− 4 we have

|SLτ(ai‖ai+1‖ · · · ‖ar‖x)− SLτ(ai‖a(L−4)
i+1 ‖xi)| <

C

2L−4
.

Hence making the substitution for each of the r − 1 subwords (no substitution is nec-

essary for aR) gives

µb ≤ Cez(r−1)2−L
∑
a∈ ΓRb x

[
r∏
i=1

ezSLτ(ai‖a
(L−4)
i+1 ‖xi)

]
δπq(ga)

= Cez(r−1)2−L
∑
a∈ ΓRb x

[
r∏
i=1

ezSLτ(ai‖a
(L−4)
i+1 ‖xi)

]
[δπq(ga1 ) ∗ δπq(ga2 ) ∗ · · · ∗ δπq(gar )].

Instead of decomposing a into subwords of length L, we would like to start with

subwords and determine which concatenations are admissible. We may choose a ∈ ΓRb x

in the following way:

1. select a
(L−4)
1 ∈ bΓ

L−4 and a
(L−4)
i ∈ ΓL−4 for the remaining i = 2, . . . , r.
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2. select a
(4)
r ∈ Γ4

a
(L−4)
r x

and a
(4)
i ∈ Γ4

a
(L−4)
i−1 a

(L−4)
i

for the remaining i = 1, . . . , r − 1.

The effect is to separate the sum into an outer sum depending on the prefixes of length

L− 4 and an inner sum of the suffixes of length 4. We will also distribute the product[∏r
i=1 e

zSLτ(ai‖a
(L−4)
i+1 ‖xi)

]
into the convolution:

∑
a
(L−4)
1 ,...,a

(L−4)
r

∑
a
(4)
1 ,...,a

(4)
r

[
ezSLτ(a1‖a(L−4)

2 ‖x1)δπq(ga1 )

]
∗ · · · ∗

[
ezSLτ(ar‖x)δπq(gar )

]

=
∑

a
(L−4)
1 ,...,a

(L−4)
r

∑
a
(4)
1

ezSLτ(a1‖a(L−4)
2 ‖x1)δπq(ga1 )

 ∗ · · · ∗
∑
a
(4)
r

ezSLτ(ar‖x)δπq(gar )

 .
Define

ηj :=
∑
α
(4)
j

ezSL(aj‖a
(L−4)
j+1 |xj)δπq(gaj )

as a distribution on SL2(q). Our first observation about the measures ηj is that the

ratio of any two coefficients is bounded. For two admissible a
(4)
j , ã

(4)
j∣∣∣SLτ(a

(L−4)
j ‖a(4)

j ‖a
(L−4)
j+1 ‖xj)− SLτ(a

(L−4)
j ‖ã(4)

j ‖a
(L−4)
j+1 ‖xj)

∣∣∣
≤ C +

∣∣∣S4τ(a
(4)
j ‖a

(L−4)
j+1 ‖xj)− S4τ(ã

(4)
j ‖a

(L−4)
j+1 ‖xj)

∣∣∣ .
The two cylinders C

a
(4)
j

, C
ã
(4)
j

may be disjoint. However, the distance between them

is still bounded since they lie in S(X ) ⊂ {x + iy : |x| < 1/2, 0 < y < 1/2}. So an

application of the Mean Value Theorem gives that the second term in the inequality is

less than some universal constant. In other words,

ezSLτ(a
(L−4)
j ‖a(4)j ‖a

(L−4)
j+1 ‖xj) = ezSLτ(a

(L−4)
j ‖ã(4)j ‖a

(L−4)
j+1 ‖xj)(1 +O(1))

So the coefficients of the sum defining ηj are nearly flat. In order to establish an

expansion result for ηj , we will also need the following:

Lemma 5. For any j, pairs of admissible suffixes of a
(L−4)
j of length 4 generate all of

SL2(Z[i]). Specifically, for any two letters i, j ∈ PR, we have

〈
π(a)π(ã)−1 : a, ã ∈ Γ4

i j

〉
= SL2(Z[i])

where π : ΣR → SL2(Z[i]).
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Proof. Write a = α1α2α3α4 and ã = α̃1α̃2α̃3α̃4 where i‖a‖j and i‖ã‖j are admissible.

Note that i only places a restriction on α1 and α̃1 and j only places a restriction on α4

and α̃4. In order to reduce the number of cases we must check, we will select α1 = α̃1

and α4 = α̃4 to maximize the number of options for the middle two letters.

Recall Figure 4.1 represents the image of a part in P under f̂ . The image of a

single part will be a union of the parts in various regions. For instance a full square

part will map to all of the even regions or all of the odds, while a ‘sliver’ part will map

to (1), (2), (7), or (8). Each of the eight regions contains at least one full square part.

Select the letters α1 = α̃1 and α4 = α̃4 corresponding to that square part. The effect

is that we may choose any α2, α3 and α̃2, α̃3 so long as:

1. α2‖α3 is admissible,

2. α̃2‖α̃3 is admissible,

3. α2 and α̃2 both come from the same quadrant (i.e. the both correspond to parts

in the positive reals half-plane or the negative reals half-plane).

Therefore, it suffices to show that the elements (α2α3)(α̃2α̃3)−1 satisfying the above

conditions generate PSL2(Z[i]). (Recall that 〈S〉 = 〈ξiSξ−1
i 〉 for any generating set S.)

In the following table, we present a list of matrix equations of the form

m = a1a2[a3a4]−1a5a6[a7a8]−1.

The first four equations all have a1, a3, a5, a7 corresponding to parts in the right quad-

rant. The last four equations have them in the left quadrant. Below each equation is

a figure showing the part corresponding to each matrix. One can refer to Table 3.1 to

ensure that each pairing ((1, 2), (3, 4), (5, 6) and (7, 8)) is admissible.

Table 5.1: Admissible Generators

The Right Quadrant−1 1

0 −1

 =

0 −1

1 2

0 −1

1 −3

0 −1

1 3

0 −1

1 −4

−1
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∗

0 −1

1 7

0 −1

1 −3

0 −1

1 2

0 −1

1 −3

−1

531,72,6,84

−i 0

0 i

 =

0 −1

1 3

0 −1

1 2

0 −1

1 6 + 3i

0 −1

1 2

−1

∗

0 −1

1 3

 0 −i

−i 3ii

 0 −i

−i 3ii

 0 −i

−i 3ii

−1

1,52,4

3

6,7,8

i 1

0 −i

 =

0 −1

1 1 + i

0 −1

1 −2

0 −1

1 3

0 −1

1 −3

−1

∗

0 −1

1 6

0 −1

1 −2

0 −1

1 2 + i

0 −1

1 −2

−1

2,6,8

1

34 5

7
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−3 −1

1 0

 =

0 −1

1 1 + 2i

0 −1

1 −2

0 −1

1 2

0 −1

1 −2 + i

−1

∗

0 −1

1 2 + 2i

0 −1

1 −2

0 −1

1 2

0 −1

1 −3 + i

−1

2,6

1

8 4

5

3, 7

The Left Quadrant−1 −1

0 −1

 =

0 −1

1 −2

0 −1

1 3

0 −1

1 −3

0 −1

1 4

−1

∗

0 −1

1 −7

0 −1

1 3

0 −1

1 −2

0 −1

1 3

−1

5 2,6,8 41,73

−i 0

0 i

 =

0 −1

1 −3

0 −1

1 2

0 −1

1 −6 + 3i

0 −1

1 2

−1

∗

0 −1

1 −3

 0 −i

−i 3ii

 0 −i

−i 3ii

 0 −i

−i 3ii

−1
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1,5 2,4

3

67,8

−i −1

0 i

 =

0 −1

1 −1 + i

0 −1

1 2

0 −1

1 −3

0 −1

1 3

−1

∗

0 −1

1 −6

0 −1

1 2

0 −1

1 −2 + i

0 −1

1 2

−1

2,6,8

1

3 45

7

−3 1

−1 0

 =

0 −1

1 −1 + 2i

0 −1

1 2

0 −1

1 −2

0 −1

1 2 + i

−1

∗

0 −1

1 −2 + 2i

0 −1

1 2

0 −1

1 −2

0 −1

1 3 + i

−1

2,6

1

84

5

3, 7

We claim the previous calculations suffice to show that the suffixes generate SL2(Z[i]).
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The canonical generating set for PSL2(Z[i]) isT1 =

1 1

0 1

 , Ti =

1 i

0 1

 , Q =

−i 0

0 i

 , S =

0 −1

1 0

 .

In both cases, we gave combinations for T1 and Q. For Ti, we appeal to the following

identity i 1

0 −i

−i 0

0 −i

 =

1 i

0 1

 .

Since we have the full group of translation matrices in PSL2(Z[i]), it is enough to find

a matrix of the form  ∗ ∗

−1 0


which is the last equation for each case (the left or right quadrant.)

5.1.2 Expansion via Selberg’s 3/16 Theorem

We are now ready to prove the expansion theorem for the ηj ’s defined on page 30. For

each square-free q, we have the product representation SL2(q) ∼=
∏
p|q SL2(p) which

gives rise to the following decomposition for functions defined on SL2(q):

L2(SL2(q)) =
⊕
q′|q

Eq′

where

Eq′ := {ϕ : SL2(q)→ C|

ϕ(g) = ϕ(g′) if g = g′(q′),

〈ϕ,ψ〉 = 0 for all ψ ∈ Eq′′ such that q′′|q′ and q′′ < q′}

We first treat one Eq at a time, and then assemble them using Fourier-Walsh decom-

position (see Section 5.3 on page 42).

Theorem 11. If ϕ ∈ Eq, then

||ηj ∗ ϕ||2 ≤ (1− C)||ηj ||1||ϕ||2

.
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Proof. First, we retrace the standard steps to rewrite ||ηj ∗ϕ||22 in terms of a convolution

operator. By definition,

||ηj ∗ ϕ||22 = 〈ηj ∗ ϕ, ηj ∗ ϕ〉

=

〈∑
a
(4)
j

β
a
(4)
j

δπq(aj) ∗ ϕ,
∑
a
(4)
j

β
a
(4)
j

δπq(aj) ∗ ϕ

〉

where we have

β
a
(4)
j

:= ezSLτ(aj‖a
(L−4)
j+1 ‖xj).

Expanding the square gives

||ηj ∗ ϕ||22 =
∑
k∈G

∑
a
(4)
j

β
a
(4)
j

δπq(aj) ∗ ϕ(k)


2

=
∑
k

∑
a
(4)
j ,ã

(4)
j

β
a
(4)
j

β
ã
(4)
j

ϕ(kπq(aj)
−1)ϕ(kπq(ãj)

−1).

(Recall that aj = a
(L−4)
j ‖a(4)

j and ãj = a
(L−4)
j ‖ã(4)

j .) We reorder the following sums as

||ηj ∗ ϕ||22 =
∑
k

∑
a
(4)
j ,ã

(4)
j

β
a
(4)
j

β
ã
(4)
j

ϕ(kπq(a
(4)
j )−1)ϕ(kπq(ã

(4)
j )−1)

=
∑
k

∑
a
(4)
j ,ã

(4)
j

β
a
(4)
j

β
ã
(4)
j

ϕ(kπq(a
(4)
j )−1πq(ã

(4)
j ))ϕ(k).

Now, from Lemma 5 and the analogue of Selberg’s 3/16 theorem for congruence sub-

groups of SL2(Z[i]) (see [Sar83] or Theorem 6.1 in [EGM13]) we deduce that for any

ϕ ∈ l20(SL2(q)) there is some choice of a0, ã0 ∈ a(4)
j , ã

(4)
j so that

||πq(a0)πq(ã0)−1 ∗ ϕ− ϕ||2 > ε||ϕ||2.

The law of cosines gives

∥∥πq(a0)πq(ã0)−1 ∗ ϕ− ϕ
∥∥2

= 2− 2
〈
πq(a0)πq(ã0)−1 ∗ ϕ,ϕ

〉
and so

βa0βã0
〈
πq(a0)πq(ã0)−1 ∗ ϕ,ϕ

〉
< βa0βã0(1− ε′)||ϕ||2.
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We separate the a0, ã0 term from the rest of the sum as follows

||ηj ∗ ϕ||22 ≤
′∑

a
(4)
j ,ã

(4)
j

β
a
(4)
j

β
ã
(4)
j

||ϕ||2 + βa0βã0(1− ε′)||ϕ||2

Since we established earlier that βαj = βα′j (1 +O(1)), this gives

||ηj ∗ ϕ||22 ≤ (1− C)||ηj ||21||ϕ||22.

Apply Theorem 11 to each ηj and we have

Corollary 1. For ϕ ∈ Eq∥∥∥∥∥∥
∑
a∈ ΓRb x

[
ezSLτ(a1‖a(L−4)

2 ‖x1)δπq(ga1 )

]
∗ · · · ∗

[
ezSLτ(ar‖x)δπq(gar )

]
∗ ϕ

∥∥∥∥∥∥
2

≤ (1− C)r

 ∑
a∈ ΓRb x

r∏
i=1

|ezSLτ(ai‖a
(L−4)
i+1 ‖xi)|

 ||ϕ||2.
Next, we exploit quasi-randomness of SL2(q) to get a bound for µb.

Theorem 12. For R � log N(q) with µb as defined previously on page 28, we have

||µb ∗ ϕ||2 ≤ CN(q)−1/4||µb||1||ϕ||2

for any ϕ ∈ Eq.

Proof. Recall

µb :=
∑
a∈ ΓRb x

ezSN τ(b‖a‖x)δπq(ga)

Define

ν := e<zSM τ(b‖a0‖x)
∑
a∈ ΓRb x

e<zSRτ(a‖x)δπq(ga)

We established earlier that |µb| ≤ Cν. Corollary 1 and bounded distortion yield the

following bound for ν:∥∥∥∥∥∥
∑
a∈ ΓRb x

e<zSRτ(a‖x)δπq(ga) ∗ ϕ

∥∥∥∥∥∥
2

≤ (1− C)r

 ∑
a∈ ΓRb x

e<zSRτ(a‖x)

 ||ϕ||2
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and therefore ||ν ∗ ϕ||2 ≤ (1− C)r||ν||1||ϕ||2.

Define A as the convolution operator ϕ 7→ µb ∗ϕ. First note that A acts on Eq since

it’s a linear combination of convolutions with delta functions. Since A∗A is self adjoint,

we have tr(A∗A) = λ2
1 + . . . λ2

|G|−1.

λ2mult(λ) ≤ tr(A∗A)

=
∑
g∈G
〈(A∗A)2δg, δg〉

=
∑
g∈G
||µ̃b ∗ µb ∗ δg||22

= |G|||µ̃b ∗ µb||22

≤ C|G|||ν̃ ∗ ν||22.

where µ̃b(g) = µb(g
−1) and a similar definition applies to ν. The multiplicity of λ equal

to the dimension of the eigenspace is at least N(q)−1
2 by the Fobenius lemma. So

||A||op = maxλ1/2 ≤ C
(
|G|||ν̃ ∗ ν||22

N(q)

)1/4

.

We bound ||ν̃ ∗ ν||2 by introducing ψ = δe − 1
|G|1G. Observe ψ ∈ l20 and ||ψ||2 < 1.

||ν̃ ∗ ν||2 = ||ν̃ ∗ ν ∗ δe||2

≤ ||ν̃ ∗ ν ∗ 1G
|G|
||2 + ||ν̃ ∗ ν ∗ ψ||2

≤ ||ν||
2
1

|G|1/2
+ ||ν||1||ν ∗ ψ||2.

Since ||ν ∗ψ||2 < (1−C)R||ν||1, we can choose R = C ′ log q to get ||ν̃ ∗ ν||2 < ||ν||1
G1/2 .
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5.1.3 Applying Theorem 12

Now we would like to use the previous bound on our congruence transfer operators

defined on page 27. Rewrite Mn
z as

Mn
s f(x, g) =

∑
a∈Γnx

esSnτ(a‖x)f(a‖x; gag)

=
∑
a∈ΓMx

∑
b∈ΓRa

esSnτ(b‖a‖x)f(b‖a‖x; gbgag)

=
∑
a∈ΓMx

∑
b∈ΓRa

esSnτ(b‖a‖x)f(b‖xb; gbgag) +O

|f |ρρM ∑
a∈Γnx

esSnτ(a‖x)

 .

where xb is arbitrarily chosen as long as b‖xb is admissible. We will frequently use the

fact that for s ≤ δR and the transfer operators defined in the non-congruence setting

we have

|Lns 1(x)| =

∣∣∣∣∣∣
∑
a∈Γnx

ezτ(a‖x)

∣∣∣∣∣∣ < λn<s.

Filling this in for the second term in our bound for the congruence transfer operator

gives

Mn
z f(x, g) =

∑
b∈ΓR

∑
a∈ ΓMb x

eτ
n(b‖a‖x)f(b‖xb; gbgag) +O

(
|f |ρρMλn<s

)
=
∑
b∈ΓR

[µb ∗ f(b‖xb; gb·)](g) +O
(
|f |ρρMλn<s

)
.

If f(b||xb, gb·) ∈ Eq, then we are in position to use the bound for µb:

||µb ∗ f(b‖xb; gb·)||2 < CN(q)−1/4||µb||1||f(b‖xb; gb·)||l2(G) < CN(q)1/4||µb||1||f ||ρ.

For any b ∈ ΓR,

‖µb‖1 =

∥∥∥∥∥∥
∑
a∈ ΓRb x

esSnτ(b‖a‖x)δga

∥∥∥∥∥∥
1

≤
∑
a∈ ΓRb x

∣∣∣esSRτ(b‖a‖x)esSM τ(a‖x)
∣∣∣

≤ C|esSRτ(b‖a0‖x)|
∑
a∈ ΓRb x

|esSM τ(a‖x)|

≤ Ce<sSRτ(b‖a0‖x)LR<s1(x).
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Apply this bound for each summand in Mn
s ,

||Mn
s f ||∞ ≤ CN(q)−1/4

∑
b∈ΓR

e<sSRτ(b‖a0‖x)
∥∥LR<s1(x)

∥∥
∞ ||f ||∞ +O(|f |ρρMλn<s)

≤ CN(q)−1/4‖Ln<s1(x)‖∞‖f‖∞ +O(|f |ρρMλn<s)

≤ CN(q)−1/4λn<s‖f‖∞ +O(|f |ρρMλn<s).

5.2 Bounding Mz in Variation

Now, we need to bound |Mn
z f |ρ. Suppose x, y ∈ Σ and w ∈ Γkx ∩ Γky ,

|Mn
z f(w‖x; g)−Mn

z f(w‖y; g)| =

∣∣∣∣∣∣
∑
a∈Γnw

ezSnτ(a‖w‖x)f(a‖w‖x, gag)− ezSnτ(a‖w‖y)f(a‖w‖y, gag)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
a∈Γnw

ezSnτ(a‖w‖x)(f(a‖w‖x; gag)− f(a‖w‖y; gag))

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
a∈Γnw

(ezSnτ(a‖w‖x) − ezSnτ(a‖w‖y))f(a‖w‖y, gag)

∣∣∣∣∣∣ .
For the first term, we note that a‖w‖x and a‖w‖y agree in the first n+ k letters so∣∣∣∣∣∣

∑
a∈Γnw

ezSnτ(a‖w‖x)(f(a‖w‖x; gag)− f(a‖w‖y; gag))

∣∣∣∣∣∣ ≤ |f |ρρn+k
∑
a∈Γnw

|ezSnτ(a‖w‖x)|

≤ |f |ρρn+kLn<z1(w‖x)

≤ |f |ρρn+kλn<z.

For the second term, we will use a similar approach as before. Decompose Γn into

ΓR ⊗ ΓM and decouple:

∑
a∈Γnw

(ezSnτ(a‖w‖x) − ezSnτ(a‖w‖y))f(a‖w‖y, gag)

=
∑
a∈ΓMw

∑
b∈ΓRa

(ezSnτ(b‖a‖w‖x) − ezSnτ(b‖a‖w‖y))f(b‖a‖w‖y; gbgag)

=
∑
a∈ΓMw

∑
b∈ΓRa

(ezSnτ(b‖a‖w‖x) − ezSnτ(b‖a‖w‖y))f(b‖xb; gbgag)

. +O

|f |ρρM ∑
a∈Γnx

(ezSnτ(a‖w‖x) − ezSnτ(a‖w‖y))

 .
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For the error term, we estimate∑
a∈Γnx

(ezSnτ(a‖w‖x) − ezSnτ(a‖w‖y)) ≤
∑
a∈Γnx

|ezSnτ(a‖w‖x)||1− ez(Snτ(a‖w‖x)−Sn(a‖w‖y))|.

For the first term, we use the eigenvalue bound. For the second, we use the fact

that π(a‖w‖x) and π(a‖w‖y) are in the same n + k cylinder combined with bounded

distortion (i.e. |(Snτ(a‖w‖x)− Sn(a‖w‖y))| < C2−k.) This gives∑
a∈Γnx

(ezSnτ(a‖w‖x) − ezSnτ(a‖w‖y)) < Cλn<z(1 + |=z|)2−k.

5.2.1 Applying Theorem 12 Again

For each b ∈ ΓR define

µb :=
∑

a∈ ΓMb w

(eτ
n(b‖a‖w‖x) − eτn(b‖a‖w‖y))δπq(ga).

The same proof as before follows through for µb, as long as R � log N(q), to yield the

following for ϕ ∈ Eq:

||µb ∗ ϕ||2 < CN(q)−1/4||µb||1||ϕ||2.

Referring to the proof, we note that the µb’s have slightly different coefficients in the

corresponding ηj ’s:

ηj :=
∑
a
(4)
j

(ezSL(aj‖a
(L−4)
j+1 ‖xj) − ezSL(aj‖a

(L−4)
j+1 ‖xj))δπq(aj).

However, the important property of ‘nearly flat coefficients’ (i.e. that the constant for

each summand varies by at most a constant ratio) is preserved. Returning to the bound

for Mn
s , we have

|Mn
s f |ρ ≤ CN(q)−1/4

∑
b∈ΓR

||µb||1||f ||∞ +O(|f |ρρM (λn<s(1 + |=z|)2−k + λn+k
<s )).

For each µb we have

||µb||1 ≤
∑
a∈ΓMx

|ezSnτ(a‖w‖x)| · |1− ez(Snτ(a‖w‖x)−Sn(a‖w‖y))| < CλM<z(1 + |=z|)2−k|ezSR(b‖xb)|.

So finally we have

|Mn
s f |ρ ≤ CN(q)−1/4λn<s||f ||∞(1 + |=z|)2−k + |f |ρρMλn<s(1 + |=z|)2−k + |f |ρρMλn+k

<s .
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Recall also our bound for ||Mn
s f ||∞:

||Mn
s f ||∞ ≤ CN(q)−1/4λn<s‖f‖∞ + |f |ρρRλn<s.

We assume n > log N(q) because we needed R = c log N(q) and n = M + R. Thus, we

have

|Mn
s f |ρ ≤ Cλn<sN(q)−1/4(1 + |=z|)(||f ||∞ + ρn/2|f |ρ)

||Mn
s f ||∞ ≤ Cλn<sN(q)−1/4(||f ||∞ + ρn/2|f |ρ).

Further, take n ∼ log q + C log(1 + |=z|) and we have

||Mn
s f ||∞ + ρn/2|Mn

s f |ρ < λn<sN(q)−1/4(||f ||∞ + ρn/2|f |ρ).

Iterating the inequality yields

||Mmn
s f ||ρ < λmn<s N(q)−m/4N(q)(1 + |=s|)||f ||ρ.

5.3 Fourier-Walsh Decomposition

We would like to extrapolate from the previous bound (valid for f ∈ Eq ⊂ L2(SL2(q))) a

bound for any of the non-constant level subspaces. In particular, recall that L2(SL2(q)) =⊕
q′|q Eq′ . We temporarily denote Eq′ inside of L2(SL2(q)) as Eq′(q) in order to compare

Eq′(q) with Eq′(q
′). This decomposition extends to one for C(ΣR × SL2(q)), namely

C(ΣR × SL2(q)) =
⊕
q′|q

C(ΣR, Eq′).

1. Mz,q preserves the subspaces C(ΣR, Eq′) because

Mz,qf(x, ·) =
∑
a∈Γ1

x

ezτ(a‖x)f(a‖x, ga·)

and g 7→ gag is an automorphism of SL2(q) for each a. So the right hand side is

a linear combination of functions in C(ΣR, Eq′).

2. The natural projection from SL2(q) to SL2(q′) extends to the subspaces Eq′(q)

and Eq′(q
′). In particular, f ∈ Eq′(q) and the corresponding f̂ ∈ Eq′(q′) satisfy

||f ||L2(q) =

√
|SL2(q)|
|SL2(q′)|

||f̂ ||L2(q′)
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and if we denote the norm || · ||ρ,q′ on Fρ(ΣR, E
′
q) we have

||f ||ρ,q ≤
∑
q′|q

√
|SL2(q)|
|SL2(q′)|

||f̂ ||ρ,q′ .

3. ̂Mz,q(1⊗ f) = Mz,q′(1⊗f̂), i.e. the projection is equivariant under the appropriate

congruence transfer operators.

These three properties allow us to decompose a function f =
∑

q′|q fq′ where fq′ ∈

C(ΣR × Eq′) and apply our bound as if fq′ is in Fρ(Σ, Eq′(q′)). Assume f1 = 0, i.e. f

is orthogonal to the constant function.

5.3.1 Small Imaginary Part

For small imaginary part (|=s| < N(q))

∑
16=q′|q

√
|SL2(q)|
|SL2(q′)|

||Mm
z,q′ f̂q′ ||ρ,q′ ≤

∑
1 6=q′|q

√
|SL2(q)|
|SL2(q′)|

λm<sN(q)−m/(4n)N(q′)(1 + |=s|)||f̂q′ ||q′

≤
∑

1 6=q′|q

√
|SL2(q)|
|SL2(q′)|

N(q′)Ce−εnλn<z||f̂q′ ||q′

≤ N(q)Ce−εnλn<z||f ||q

where we used that ||f̂q′ ||q′ ≤ ||f ||q and that the number of divisors of q is at most

N(q)ε
′
.

5.3.2 Large Imaginary Part

For large imaginary part (|=s| > N(q)), we have

∑
16=q′|q

√
|SL2(q)|
|SL2(q′)|

||Mm
z,q′ f̂q′ ||ρ,q′ ≤

∑
1 6=q′|q

√
|SL2(q)|
|SL2(q′)|

λm<sN(q)−m/(4n)N(q′)(1 + |=s|)||f̂q′ ||q′

≤
∑

1 6=q′|q

√
|SL2(q)|
|SL2(q′)|

|=z|Ce−εn
log N(q′)
log |=z| λn<z||f̂q′ ||q′

≤ ||f ||q|=z|Cλn<z
∑

1<N(q′)<|=z|

e
−εn log N(q′)

log |=z| .
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To bound the sum, observe

∑
1<N(q′)<|=z|

e
−εn log N(q)

log |=z| <
∏
p|q

(
1 + exp

(
εn
− log N(p)

log |=z|

))
− 1

≤ exp

(∑
p

e
−εn log N(p)

log |=z|

)
− 1

< C exp

( ∞∑
s=2

e
−εn log s

log |=z|

)
− 1

< e
− εn

log |=z| .

We have shown the following:

Theorem 13. For f orthogonal to the constant functions, there is some ε so that

||Mn
s f ||ρ ≤


N(q)Ce−εnλn<s||f ||ρ |=z| ≤ N(q)

|=s|Ce
−εn

log |=s|λn<s||f ||ρ |=z| � N(q)

.

Now, in order to find the region of analyticity of (1−Mz)
−1, we recall that z 7→ λz

is holomorphic in a small neighborhood of δR and λδR = 1. In particular, this means

there is some ε2 such that λ<z < eε/2 for all <z ∈ [−δ,−δ + ε2]. We can also find ε3 so

that for z satisfying <z ∈ [−δ,−δ + ε3
1

log |=z| ] we have

λ<z < e
ε/2 1

log |=z| .

For z in both regions, we have that (1 −Mz)
−1 (restricted to the space orthogonal to

constant functions) is holomorphic and bounded by

||(1−Mz)
−1||ρ < (N(q) + |=z|)C .

5.4 Fourier Analysis of the Renewal Function

Similar to the previous chapter, we introduce a counting function which satisfies a

functional equation relating it to the resolvent of the congruence transfer operator Mz

on Fρ(ΣR × SL2(q)). To incorporate the congruence aspect, we define

Nq(X, a, g, f) :=
∞∑
n=0

∑
b∈Γna

g(b‖a)f(πq(b))1{Snτ(b‖a)≤X}.
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where g is a function on ΣR, f is a function on SL2(q), a ∈ ΣR, and X > 0. The

renewal equation is

Nq(X, a, g, f) =
∑
b∈Γ1

a

Nq(X − τ(b‖a), b‖a, g, ρ(πq(b))f) + g(a)f(1)1{0≤X}

where ρ denotes the right regular representation of SL2(q). In particular

ρ(πq(b))f(z) = f(zπq(b)).

The Laplace transform

Fq(s, a, g, f) :=

∫ ∞
−∞

e−stNq(t, a, g, f)dt

satisfies

sFq(s, a, g, f) = (1−Ms,q)
−1[g ⊗ f ](a).

Observe that Nq(X, a, g, f) is linear in f and so is its Laplace transform. The main

contribution to Fq(s, a, g, f) comes from the constant term and this analysis is a straight-

forward extension of the previous chapter since

Nq(t, a, g,1) = N(t, a, g).

The contribution from functions orthogonal to constants is bounded using Theorem 13.

As in [BGS11], we can choose a smooth nonnegative function k on R such that∫
k = 1, supp(k) ⊂ [1, 1] with the following bound for its Fourier transform

|k̂(ξ)| ≤ C exp(−|ξ|1/2).

For some small parameter γ, we define

kγ(t) =
1

γ
k

(
t

γ

)
.

Note that |k̂γ(ξ)| ≤ C exp(−|γξ|1/2).

Inserting the smoothing function gives∫ ∞
−∞

kγ(t)Nq(X + t, a, f)dt =
1

2πi

∫
δR+iR

eXsk̂γ(s)(I −Ms)
−1ds.

Theorem 13 allows us to shift the contour by

−δR + it 7→ −δR +
ε

2
min

(
1,

1

log(1 + |t|)

)
+ it

and gives
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Theorem 14. For ϕ ∈ L2(SL2(q)) with 〈ϕ, 1〉 = 0,∣∣∣∣∣
∫ γ/2

−γ/2
kγ(t)N(T + t, ϕ, a)dt

∣∣∣∣∣ < N(q)Cγ−C exp

(
min

(
1,

1

log T
γ

))
eTδ||ϕ||2.

5.5 The Finite Renewal Function

As in the previous chapter, the geodesic count comes from an analysis of a lattice point

counting function which is close to our renewal function Nq for large sequences. The

strategy is analogous to [Lal89] or [MOW17].

We define

N∗q (X, a, g, f) :=
∞∑
n=0

∑
b∈Γna

g(b‖a)f(πq(b))1{Snτ∗(b‖a)≤X}

where a ∈ Σ∗R ∪ Σ (see Section 4.3 for the definition of the space (Σ∗ ∪ Σ, σ) and τ∗.)

To count geodesics with congruence conditions, it suffices to provide an asymptotic for

N∗(T, ∅,1, δπq(g)) = #{b ∈ Σ∗R : gb ≡ g mod q, d(j, gbj) < T}

= #{b ∈ Σ∗R : gb ≡ g mod q, ||gb|| <
√

2 coshT}.

Iterating the finite renewal equation yields

N∗(X, a, g, f) =
∑
b∈Γna

N∗(X − Snτ∗(b), b, g, ρ(πq(b))f)

+
n−1∑
k=1

∑
b∈Γka

g(b‖a)f(πq(b))1{Skτ∗(b)≤X} + g(a)f(1)1{X≥0}.

As X → ∞, the second line does not change. For each summand corresponding to

b ∈ Γna in the first line we can find b′ ∈ ΣR to sandwich between the two terms

Nq(T ± 2−n+k − Snτ∗(b′), b′, g, ρ(πq(b))f) � N∗q (T − Snτ∗(b), b, g, ρ(πq(b))f).

So, it suffices to analyze Nq(T±2−n+k−Snτ∗(b′), b′, g, ρ(πq(b))1{πq(g)}) (sending n→∞

to get the final theorem). Let ϕ = δπq(g) and write

ϕ =
〈ϕ, 1〉
|SL2(q)|

1 + ϕ′
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where 〈ϕ′, 1〉 = 0. Then we have∫ ∞
−∞

kλ(t)N(T + t, a, ϕ)dT =
〈ϕ, 1〉
|SL2(q)|

1

2πi

∫
δ+iR

easF (s, a, 1)k̂λ(s)ds

+
1

2πi

∫
δ+iR

easF (s, a, ϕ′)k̂λ(s)ds.

Observe Nq(T, a, 1) = N(T, a) where N(T, a) is the renewal function defined in the

previous section. We established in the previous section that

N(T −O(2−N ), b) ≤ N∗(T, a) ≤ N(T +O(2−N ), b)

when a and b are in the same N -cylinder. So the first term is N∗(T, a) + O(eT (δ−c)).

Since Nq(T, a, g, f) is increasing in T , we have

Nq(T − γ, a, g, f) ≤
∫ γ

−γ
kγ(t)Nq(T + t, a, g, f)dt ≤ N(T + γ, a, g, f).

Sending γ → 0 and appealing to Theorem 14 gives

Nq(T, a, g, ϕ
′)� N(q)C(e−Tε3 + e

1
log T )eTδR .

After renaming constants, we have shown Theorem 4 from the introduction:

Theorem 15. For each R > 8, there is some absolute spectral gap ΘR > 0 and absolute

constants cR, CR > 0 such that for all square-free q ∈ Z[i] and ω ∈ SL2(q) we have the

estimate∣∣∣∣#{g ∈ ΓR ∩BX : g ≡ ω mod q} − #(ΓR ∩BX)

|SL2(q)|

∣∣∣∣�R #(ΓR ∩BX)E(q,X)

as X →∞, where

E(q,X) =


e−cR

√
logX N(q) < CR logX

N(q)CRX−ΘR N(q) > CR logX

.
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Chapter 6

The Growth Parameter δR

Recall from Chapter 4 that we proved the following asymptotic

#ΓR ∩BX � X2δR .

The exponent δR was the unique solution to the pressure equation

P (s) = log λs = 0.

In other words, the function s 7→ λs (where λs is the maximal eigenvalue of Ls on s ∈ S)

is strictly decreasing in s and λδR = 1.

We will make use of the fact that δR is arbitrarily close to 2 as R → ∞ in a later

section. Therefore, we now show that δ = δ(R) → 2 as R → ∞. In order to proceed,

we need to consider the action of the transfer operators on a different space where it

becomes easier to compare Ls,R for varying R.

Previously, we have considered transfer operators on the subshift of finite type

(ΣR, σ). In order to show that δR → 2 as R → ∞, we will need to compare the

dynamics in (ΣR, σ) to that of the subshift on a countable alphabet (Σ, σ).

Recall the set of admissible words in the countably infinite alphabet P is

Σ := {(p1, p2, . . .) : pi ∈ P, f(pi) ⊃ pi+1}.

We work in the space of Hölder continuous functions Fρ(Σ) with the norm

|| · ||ρ = || · ||∞ + | · |ρ.

Also let F∞(Σ) be the space of continuous functions endowed with the sup norm.

Consider the infinite transfer operator

Ls,∞g(x) :=
∑

y∈Σ:σ(y)=x

e−sτ(y)g(y)
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where the distortion function τ is the same as before: τ(y) = log |f ′(π(y))|. In order to

establish that Ls,∞ is a bounded linear operator, we need that sτ is summable, i.e.

∑
y∈E1

(
sup
x∈Σ

e−sτ(y‖x)

)
<∞.

In the interior of each one-cylinder, f is defined as f(z) = (−1)k(1/z − b1/ze) and so

|f ′(z)| = 1/|z|2. This bounds our weights by

|e−sτ(y‖x)| ≤ |π(y‖x)|2<s.

For each lattice point in Z[i] falling in X , we have between two and six adjacent one-

cylinders. This gives

∑
y∈E1

(
sup
x∈Σ

e−sτ(y‖x)

)
< 6

∑
z∈Z[i]

|z|≥2,=z≥0

sup
w

|w−z|<1/
√

2

|w|−2<s < C
∑

z∈Z[i]/{0}

|z|−2<s.

So, for sτ to be summable, it suffices that <s > 1.

In place of the irreducible and periodic properties of the finite subshifts (ΣR, σ),

we must now have that (Σ, σ) is finitely primitive. In other words, there exists some

k and finite subset W ⊂ Ek such that for each i, j ∈ E1 there is some ω ∈ W such

that iωj is admissible. This is clear from the proof we provided for the irreducibility of

(ΣR, σ). We divided the one-cylinders into eight regions, each containing a full square.

The image of each under f contained two squares which in turn maps to the full region.

Thus, we can choose W ⊂ E2 of size 16.

With these properties, we may apply the Perron-Frobenius theory for subshifts on

a countable alphabet. See [MU01] or [MU03] for proof of the following theorem

Theorem 16. For the infinite transfer operator Ls,∞, as long as <s > 1, we have

1. The spectral radius of Ls acting on either F∞ or Fρ is λs,∞ = eP (sτ)

2. λs,∞ is a simple eigenvalue and has a corresponding eigenfunction hs,∞ ∈ Fρ ⊂

F∞ which is positive.

3. The remainder of the spectrum on Fρ is in a disc centered at 0 with radius strictly

smaller than λs,∞.
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where P (sτ) denotes the pressure function:

P (sτ) := lim
n→∞

1

n
log

∑
ω∈En

(
sup
x∈Σ

esSnτ(ω‖x)

)
.

Note that the topological pressure P (sτ) is increasing in s and there is a unique 0.

Combining [Sul84] with [Ser81], we have that this value is the critical exponent δ(Γ)

which is equal to the Hausdorff dimension of the limit set of Γ which is 2 (since the

limit set has non-zero Lebesgue measure). Thus, λ2,∞ = 1.

Information about λs,R will follow from Keller-Liverani Perturbation Theorem (see

Appendix A of [PU18] or [LV98] for proof.)

We will work in the setting of the two norms || · ||∞ ≤ || · ||ρ in the Banach space

Fρ(Σ). Define

|||Q||| := sup{||Qf ||∞ : ||f ||ρ ≤ 1}

and consider a family of operators Pk compared to some ‘limit operator’ P . The next

theorem will require the four following conditions:

1. There are C,M > 0 such that for all k, n ∈ N,

||Pnk ||∞ ≤ CMn

.

2. There are C1, C2, α > 0 such that for all n, k ∈ N,

||Pnk f ||ρ ≤ C2α
n||f ||ρ + C2M

n||f ||∞

.

3. If z ∈ σ(Pn) ∩Bc
(0, α), then z is not in the residual spectrum of Pn.

4. |||Pk − P ||| → 0 as k →∞.

Although the full Keller-Liverani Perturbation Theorem provides more refined infor-

mation about the spectrum of Pk and P , we only need the following
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Theorem 17. Assume the family {Pk}k∈N and P satisfy conditions (1)-(4) above. If

λ is a simple, isolated eigenvalue of P , then for every sufficiently large k, there exists

a unique simple eigenvalue λk of pk such that

lim
k→∞

λk = λ.

We will apply the theorem to the following family: Ls,Rf := Ls,R[1E1
R
f ]. In other

words, we’ll only sum over the one-cylinders in ΣR. Conditions (1) and (2) follow from

||Ls,R||∞ ≤ ||Ls,∞||∞ and ||Ls,R||∞ ≤ ||Ls,∞||∞. Condition (3) is automatically satisfied

by our choice of || · ||∞ in Fρ(Σ). In particular, the unit ball in Fρ(Σ) is || · ||∞-compact

by Ascoli’s theorem (see [PP90].) Therefore, we must now only establish property (4).

6.0.1 Perturbation estimates for large alphabets

Assuming <s > 1, we have

||(Ls,∞ − Ls,R)f(x)||∞ =

∥∥∥∥∥∥
∑

y∈E1\E1
R

esτ(y‖x)f(y‖x)

∥∥∥∥∥∥
∞

< C||f ||∞
∑

z∈Z[i],|z|>R−1

|z|−2<s

< C
||f ||∞
R

.

So the Keller-Liverani perturbation theorem implies λs,R → λs,∞ as R → ∞ when

<s > 1. Since λ2,∞ = 1 and λs, R is analytic in s for fixed R we have that the solution

to λs,R = 1 lies in an epsilon neighborhood of 2 for large enough R.

Finally, we must relate the eigenvalues of Ls,R on (Σ, σ) to those of Ls on (ΣR, σ).

It suffices to show that

lim
n→∞

1

n
log

∑
ω∈EnR

(
sup
x∈Σ

esSnτ(ω‖x)

)
= lim

n→∞

1

n
log

∑
ω∈EnR

(
sup
x∈ΣR

esSnτ(ω‖x)

)

(P1) = (P2)

since the left hand side is the log of the lead eigenvalue for Ls,R on (Σ, σ) and the right

hand side is the log of the lead eigenvalue of Ls on (ΣR, σ).



52

Combining the fact that the diameter of an n cylinder is at most 2−n with bounded

distortion, we have

sup
x∈Σ

esSnτ(ω‖x) = sup
x∈ΣR

esSnτ(ω‖x) +OR(2−n)

where the bound is uniform over w ∈ EnR for fixed s. Inserting this into (P1) gives

(P1) = (P2) + lim
n→∞

1

n
log

(
1 +

∑
w∈EnR

supx∈ΣR e
sSnτ(w‖x)

C
∑

w∈EnR
2−n

)

For w ∈ EnR and x ∈ ΣR, bounded distortion yields |esSnτ(w‖x)| ∈ [(1/R)2<s, (1/2)2<s].

So,

(P1) = (P2) + lim
n→∞

1

n
log

(
1 +O

(
(

2

R
)n
))

= (P2).
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Chapter 7

Construction of the Multilinear Sifting Set

Recall from Chapter 3, that the set of finite admissible words

Σ∗R = {(p1, . . . , pn) : pi ↔ ρi ∈ PR, f(ρi) ⊃ ρi+1}

represents closed geodesics in SL2(Z[i])\H3. Specifically, when we restrict to aperiodic

words in Σ∗R we have an exact correspondence. In order to detect whether a geodesic

is fundamental, we will need to use the correspondence between closed geodesics and

hyperbolic matrices in SL2(Z[i]). We define

π : Σ∗R → SL2(Z[i])

a 7→ f |Ca

where Ca is the cylinder ρa1 ∩ f−1(ρa2) ∩ · · · ∩ f−k−1(ρak) and f , the Pollicott map,

acts as a fractional linear transformation locally on that cylinder. Therefore, we may

express the correspondence between Σ∗R and closed geodesics (as primitive hyperbolic

matrices in SL2(Z[i])) as

ΓR := {π(a) : a ∈ Σ∗R, a is aperiodic}.

In order to develop an asymptotic estimate for

#{ω ∈ ΓR : tr2(ω)− 4 square-free , ||ω|| < X}

we will use the multilinear structure coming from Σ∗R.

In order to construct a large set of geodesics with the desired expansion properties,

we specify the general expansion result from a previous chapter, so that we have a fixed

radius R and corresponding spectral gap Θ:



54

Theorem 18. There is an absolute Θ > 0 (fixed throughout the remaining sections)

and c, C > 0 such that for any square-free q ∈ Z[i]

#{γ ∈ Γ8 ∩BY : γ ≡ α mod q} =
#(Γ8 ∩BY )

|SL2(q)|
+O (#(Γ8 ∩BY )E(Y, q))

as Y →∞ where

E(Y, q) =


e−c
√

log Y N(q) ≤ C log Y

N(q)CY −Θ N(q) > C log Y

.

We also have from Chapter 4 that #(Γ8 ∩BY ) � X2δ8 . In order to increase the size

of the sifting set, we embed Γ8 inside a larger subset of geodesics. In particular, define

Ξ0 := {a ∈ Σ∗R : π(a) ∈ BX}, Ω0 := {a ∈ Σ∗R : π(a) ∈ BZ}

while

ℵ0 := {a ∈ Σ∗8 : π(a) ∈ BY }

We would like to construct a set which is the product of Ξ0, ℵ0, and Ω0 such that any

combination of three elements from the respective sets gives a unique geodesic. To this

end, we recall the notation from page 27. Specifically, if a‖b denotes the admissible

concatenation of two finite words. There are two possible issues we must address:

1. For each ξ ∈ Ξ0, a ∈ ℵ0, ω ∈ Ω0, the concatenation ξ‖a‖ω may not be admissible.

2. For each ξ ∈ Ξ0, a ∈ ℵ0, ω ∈ Ω0, the concatenation ξ‖a‖ω may not be unique.

Since the length of words in Ξ0,ℵ,Ω0 may vary it is possible that the same product

may occur at different concatenation spots.

To avoid (2), we establish a uniform length of the words in Ω0 and Ξ0. For (1), we will

add a universal transition between ξ and a as well as a and ω.

In ΓR, wordlength is commensurate with the log of the norm. Specifically, for a ∈ Σ∗R

we have l(a) � ||π(a)||. Since

#Ξ0 = #(ΓR ∩BX) � X2δR

there is some lx so that

Ξ := {a ∈ Σ∗R|a ∈ Ξ0, l(a) = lx} ⊂ Ξ0
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has size � X2δR/ logX. Similarly, we can find lz and

Ω := {a : a ∈ Σ∗R|a ∈ Ω0, l(a) = lz} ⊂ Ω0

of size � Z2δR/ logZ.

Finally, we address the issue that ξ‖a‖ω may not be an admissible concatenation in

Σ∗R. Recall from Chapter 3 that (ΣR, σ) is irreducible and aperiodic as long as R > 3.

In the course of proving these properties, we showed that f̂3(p1) ⊃ p2 for any two states

in p1, p2 ∈ PR . Therefore for any two words a, b ∈ Σ∗R there is a word ι of length 3

such that a‖ι‖b ∈ Σ∗R. Note that ι only depends on the final letter of a and the first

letter of b. So we can arbitrarily choose a dictionary of three letter words ι such that

a‖ι‖b is admissible and abbreviate the new word as a‖̇b. Thus, we define our sifting set

as

Π = {ξ‖̇a‖̇ω : ξ ∈ Ξ, a ∈ ℵ, ω ∈ Ω}.

Since π(Ξ) ⊂ BX , π(ℵ) ⊂ BY , π(Ω) ⊂ BZ there is some universal C such that π(Π) ⊂

BCN where N = XY Z.

Write

|Uq| =
∑
$∈Π

1{tr2(π($))−4≡0(q)} =
∑

t mod q
t2≡4(q)

∑
$∈Π

1{tr(π($))≡t(q)}

=
∑

t mod q
t2≡4(q)

∑
$∈Π

1

N(q)

∑
q|N(q)

∑
χ(q)

χ(tr(π($))− t)

where
∑
q|N(q)

is a sum over real q and
∑
χ(q)

ranges over all characters of Z[i]/(q) of order

q. We will now separate the sum into characters of small and large order.
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Chapter 8

Small Divisors

We estimate

Mq :=
∑

t mod q
t2≡4(q)

∑
$∈Π

1

N(q)

∑
q|N(q)
q≤Q0

∑
χ(q)

χ(tr(π($))− t)

Expand from the definition of the sifting set Π and partition ℵ into residues classes in

SL2(q):

Mq =
∑

t mod q
t2≡4(q)

∑
(ξaω)∈Π

1

N(q)

∑
q|N(q)
q≤Q0

∑
χ(q)

χ(tr(π(ξaω))− t)

=
∑

t mod q
t2≡4(q)

∑
ξ∈Σ
ω∈Ω

1

N(q)

∑
q|N(q)
q≤Q0

∑
χ(q)

∑
a0∈SL2(q)

χ(tr(π(ξa0ω))− t)

 ∑
a∈ℵ

a≡a0(q)

1

 .
Now, using Theorem 18 from page 54 we write Mq =M(1)

q + r(1)(q) where

M(1)
q :=

∑
t mod q
t2≡4(q)

∑
ξ∈Σ
ω∈Ω

1

N(q)

∑
q|N(q)
q≤Q0

∑
χ(q)

|ℵ|
|SL2(q)|

∑
a0∈SL2(q)

χ(tr(π(ξ)a0π(ω))− t),

r(1)(q) :=
∑

t mod q
t2≡4(q)

∑
ξ∈Σ
ω∈Ω

1

N(q)

∑
q|N(q)
q≤Q0

∑
χ(q)

∑
a0∈SL2(q)

χ(tr(π(ξ)a0π(ω))− t)|ℵ|E(q, Y ).

First, we address |r(1)(q)|:

∑
N(q)<Q

|r(1)(q)| �
∑

N(q)<Q

τ(q)
|Π|

N(q)

∑
q|N(q)
q≤Q0

q4qCY −Θ � |Π|(logQ)2QC0 Y
−Θ.
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Back to M(1)
q , we want to sum over all divisors of q, not only the small ones. So, we

reintroduce the large divisors by writing M(2)
q =M(1)

q + r(2)(q) where

M(2)
q :=

∑
t mod q
t2≡4(q)

|Π|
N(q)

∑
q|N(q)

∑
χ(q)

1

|SL2(q)|
∑

a0∈SL2(q)

χ(tr(a0)− t),

r(2)(q) :=
∑

t mod q
t2≡4(q)

|Π|
N(q)

∑
q|N(q)
q>Q0

∑
χ(q)

1

|SL2(q)|
∑

a0∈SL2(q)

χ(tr(a0)− t).

Observe that we collapsed the sums over Σ and Ω since they only reindex the sum over

SL2(q).

Now, define

ρt(p) :=
1

|SL2(p)|
∑

γ∈SL2(p)

∑
χ(p)

χ(tr(π(γ))− t)

=
1

|SL2(p)|
∑

γ∈SL2(p)

(N(p)− 1)1{tr(π(γ))=t(p)} + (−1)1{tr(π(γ)) 6=t(p)}

=
N(p) (#{γ ∈ SL2(p) : tr(π(γ)) = t(p)})− |SL2(p)|

|SL2(p)|
.

Lemma 6. For t = ±2 mod p,

#{γ ∈ SL2(p) : tr(π(γ)) = t(p)} = N(p)2

Proof. We may as well assume t = 2, the case when t = −2 is similar. We partition

γ =

a b

c d

 into two cases according to whether or not c = 0:

1. c = 0: In this case, we must have ad = 1 hence a + d = a + a−1 = 2. This only

happens when x2 − 2x+ 1 has a root in Fp. Examining the discriminant, we see

that there is exactly one solution. So, there’s only one choice for a and d. There

are N(p) choices for b.

2. c 6= 0: There are N(p) − 1 nonzero choices of c. In this case, there are N(p)

choices for a after which d is determined. The determinant equation implies

b = c−1(ad− 1).

Combining the two cases, we have (N(p) − 1)N(p) + N(p) = N(p)2 total matrices in

SL2(p) with trace 2.
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Therefore, we have

ρt(p) =
N(p)3 − (N(p)3 −N(p))

N(p)3 −N(p)
=

1

N(p)2 − 1
.

We can rewrite

M(2)
q = |Π|

∑
t mod q
t2≡4(q)

∏
p|q

(1 + ρt(p))

N(p)
= |Π|

∏
p|q

(1 + 1{p6=(1+i)})
(1 + ρt(p))

N(p)
.

Above, we used the Chinese Remainder Theorem to count t mod q satisfying t2 ≡ 4(q).

As long as p 6= (1+i) we will have ±2 are distinct which gives two solutions to t2 ≡ 4(p).

If p = (1 + i), then we only have one solution.

Finally, we bound
∑
q<Q
|r(2)(q)|. Note that |ρt(p)| ≤ 1

N(p) so

|r(2)(q)| � τ(q)|Π| 1

N(q)

∑
q|q

q≥Q0

1

N(q)
� |Π|N(q)ε

N(q)

1

Q0
.

Then
∑

N(q)<Q

|r(2)(q)| � |Π|Q
ε

Q0
.
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Chapter 9

Large Divisors

We first need to establish the existence of a smooth cutoff function which will allow us

to extend sums over Ξ and Ω to all of SL2(Z[i]).

9.1 Spectral Theory of the Laplace Operator

The Laplacian ∆ = z2(∂xx + ∂yy + ∂zz) − z∂z acts on L2(SL2(Z[i])\H3). There are a

finite number of discrete eigenvalues in [0, 1):

0 = λ0 < λ1 ≤ · · ·λK < 1.

In [1,∞), there is the continuous spectrum as well as the remaining part of the discrete

spectrum (see [Sel56] or [Sar83].) For the congruence subgroup Γ(q) we have the ana-

logue of Selberg’s 3/16-Theorem: λ1(q) = δ(2 − δ) ≥ 3/4 (see [Sar83] or Theorem 6.1

of [EGM13] for proof.) In other words, δ ≤ 3/2.

Denote G = SL2(C), K = SU(2), V := L2(Γ(q)\G)

V =
⊕

λj<θ(2−θ)

Vλj ⊕ V
⊥

where Vλj is a complementary series representation of parameter sj and V ⊥ does not

weakly contain any complementary series representation of parameter s > θ.

The following is standard, see [BK14] or [KO11].

Theorem 19. Let Θ and (π, V ) be a unitary representation of G which does not weakly

contain any complementary series representation with parameter s > Θ. Then for any

right K-invariant vectors Ψ1,Ψ2 ∈ V

|〈π(g).Ψ1,Ψ2〉| � ||g||−2(2−Θ)||Ψ1||||Ψ2||
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as ||g|| → ∞.

We pick a nonnegative smooth bump function ψ satisfying
∫
G/K ψ = 1. The support

of ψ is in a ball about the identity of (tiny) radius η. For large X, we define our indicator

function on SL2(C) as

ϕX(g) :=

∫
G/K

∫
G/K

1{||h−1
1 gh2||<X}ψ(h1)ψ(h2)dh1dh2.

With η small enough, we have

ϕX(g) =


1 if ||g|| < (1− ε)X

0 if ||g|| > (1 + ε)X

∈ [0, 1] otherwise

.

Since the support of ϕX is within a ball of radius (1 + ε)X, we have the following∑
γ∈SL2(Z[i])

ϕX(γ)� #{γ ∈ SL2(Z[i]) : ||γ|| < C1X} � X4

Now, we wish to establish that ϕX assigns roughly equal weights to residue classes in

SL2(p).

Proposition 1. For squarefree q and γ0 ∈ SL2(q), we have∑
ξ∈SL2(Z[i])
ξ≡γ0(q)

ϕX(ξ) =
1

|SL2(q)|
∑

ξ∈SL2(Z[i])

ϕX(ξ) +O(X3).

We follow along with the proof found in [BK14].

Proof.∑
ξ∈SL2(Z[i])
ξ≡γ0(q)

ϕX(ξ) =
∑
γ∈Γ(q)

ϕX(γγ0) =

∫
G/K

∫
G/K

∑
γ∈Γ(q)

1{||h−1
1 γγ0h2||<X}ψ(h1)ψ(h2)dh1dh2.

Define

Fq(h, g) =
∑
γ∈Γ(q)

1{||h−1γg||<X},

Ψq(g) =
∑
γ∈Γ(q)

ψ(γg),

Ψq,γ0(g) =
∑
γ∈Γ(q)

ψ(γ−1
0 γg)
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so that we have the following identity (via a standard folding and unfolding argument):

∑
ξ∈SL2(Z[i])
ξ≡γ0(q)

ϕX(ξ) = 〈Fq,Ψq ⊗Ψq,ϕ0〉q

=

∫
G/K

1{||h||<X}〈π(h).Ψq,Ψq,γ0〉qdh

Where 〈·, ·〉q denotes the inner product on L2(Γ(q)\G/K). Now, decompose the matrix

coefficient into the following

=

∫
G/K

1{||h||<X}〈π(h).Ψq|V ,Ψq,γ0 |V 〉qdh+

∫
G/K

1{||h||<X}〈π(h).Ψq|V ⊥ ,Ψq,γ0 |V ⊥〉qdh

where |V denotes projection onto the old forms and V ⊥ is orthogonal.

Claim 1: 〈π(h).Ψq|V ,Ψq,γ0 |V 〉q = 1
[Γ(q):Γ]〈π(h).Ψ1|V ,Ψ1,γ0 |V 〉1

If ϕ
(q)
1 , . . . , ϕ

(q)
l denote the oldforms for the spectrum below Θ(2−Θ), then we can

rewrite them as normalizations of the eigenfunctions at level one:

ϕ
(q)
i =

1√
[Γ(q) : Γ]

ϕ
(1)
i

The rest follows from folding and unfolding.

Claim 2:
∫
G/K 1{||h||<X}〈π(h).Ψq|V ⊥ ,Ψq,γ0 |V ⊥〉qdh� X3

Since η is fixed and ψ has ’bounded’ support, we have SΨq|V ⊥ ≤ SΨ � 1 (and

similar for Ψq,γ0). So, Theorem 19 gives∫
G/K

1{||h||<X}||h||2δ−4dh� X3.

Thus, we have shown

∑
ξ∈SL2(Z[i])
ξ≡γ0(q)

ϕX(ξ) =
1

[Γ(q) : Γ]
〈π(h).Ψ1|V ,Ψ1,γ0 |V 〉1 +O(X3).

When we use the same argument, setting q = 1, the theorem follows from

∑
ξ∈SL2(Z[i])

ϕX(ξ) = 〈π(h).Ψ1|V ,Ψ1,γ0 |V 〉1 +O(X3)



62

9.2 Character Sums

Proposition 2. Suppose q is a rational prime and q lies over q, χ : Z[i] → S1 has

order q and ξ ∈ Z[i]4 satisfies (ξ, q) = 1 (component-wise.) We have∣∣∣∣∣∣
∑

s∈SL2(q)

χq(s · ξ)

∣∣∣∣∣∣� N(q)3/2.

Proof. We may as well assume y 6= 0(q), otherwise we could alter the following argument

on s.

We now partition all s =

a b

c d

 into two cases, either c = 0 or c 6= 0. If c ≡ 0(q),

then ad− bc = 1 implies d = a−1(q) and b is anything. Since b ranges over all Z[i]/(q),

we have∑
s∈SL2(q)
c=0(q)

χq(s · ξ) =

′∑
a(q)

∑
b(q)

χq(ax+ by + a−1w) =

′∑
a(q)

χq(ax+ a−1w)
∑
b(q)

χq(by) = 0.

On the other hand if c 6= 0, then we can pick any a, d which imply b = c−1(ad− 1) so∑
s∈SL2(q)
c 6=0(q)

χq(s · ξ) =
′∑

c(q)

∑
a,d(q)

χq(ax+ c−1(ad− 1)y + cz + dw)

=
′∑

c(q)

χq(cz − c−1y)
∑
a(q)

χq(ax)
∑
d(q)

χq(d(c−1ay + w)).

Now, note that

∑
d(q)

χq(d(c−1ay + w)) =


0 a 6≡ −cy−1w(q)

N(q) a ≡ −cy−1w(q)

.

Hence ∑
s∈SL2(q)
c 6=0(q)

χq(s · ξ) = N(q)

′∑
c(q)

χq(cz − c−1y)χq(−cy−1wx)

= N(q)
′∑

c(q)

χq(c(z − y−1wx)− c−1y).

Now, since y 6= 0, we have a nontrivial Kloosterman sum (or perhaps a Ramanujan

sum if z − y−1wx = 0.) Regardless of whether q is split or inert, we have

|K(χq; a, b)| ≤ 2N(q)1/2.
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When q splits, this is just the Weil bound. When q is inert, see Theorem 5.45 of

[LN97].

From Proposition 2, we have the following

Corollary 2. For square-free q, χ a character of Z[i]/(q) of order N(q) and (ξ, q) = 1,

we have ∣∣∣∣∣∣
∑

s∈SL2(q)

χq(s · ξ)

∣∣∣∣∣∣� N(q)3/2.

Proof. Pontryagin duality allows us to express χq as a product of characters of prime

order. Apply Proposition 2 to each term.

Now, we combine this bound with our indicator function ϕ:

Proposition 3. For square-free q and a χq character of order N(q), we have∣∣∣∣∣∣
∑

ξ∈SL2(Z[i])

ϕX(ξ)χq(s · ξ)

∣∣∣∣∣∣� N(q)−3/2+εX4 + N(q)3X3.

Proof. Partition over residue classes over q and apply Proposition 1:

∣∣∣∣∣∣
∑

ξ∈SL2(Z[i])

ϕX(ξ)χq(s · ξ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

γ∈SL2(q)

χq(γ · s)
∑

ξ∈SL2(Z[i])
ξ≡γ(q)

ϕX(ξ)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

γ∈SL2(q)

χq(γ · s)

∣∣∣∣∣∣ X4

|SL2(q)|
+O(N(q)3X3)

� N(q)3/2+εX4

N(q)3
+ N(q)3X3.

9.3 Large Divisors

Define

r(q) :=
∑

t2≡4(q)

∑
$∈Π

1

N(q)

∑
q|N(q)
q≥Q0

∑
χ(q)

χ(tr(π($))− t).



64

Our goal is to bound

E :=
∑

N(q)<Q

|r(q)| =
∑

N(q)<Q

r(q)ζ(q),

where the sum ranges over square-free Gaussian ideals up to norm Q and ζ(q) captures

the argument of r(q). In order to interchange the order of q and q in E we introduce

ζ1(q, r) := q
∑

N(q)<Q
N(q)≡0(q)

ζ(q)

N(q)

∑
t2≡4(q)

χrq(−t)1{χrq∈Ẑ[i]/(q)}

for real q and r ∈ (Z/qZ)∗ . Insert ζ1 into E :

E =
∑

Q0≤q<Q

1

q

′∑
r(q)

∑
$∈Π

χrq(tr(π($)))ζ1(q, r)

where the sum is over all square-free q ∈ [Q0,Q].

We now restrict our attention to short intervals in q and fixed a ∈ ℵ, i.e.

E1(Q, a) :=
∑
q�Q

∣∣∣∣∣∣
′∑

r(q)

ζ1(q, r)
∑
ξ∈Σ

∑
ω∈Ω

χrq(tr(π(ξaω)))

∣∣∣∣∣∣
=
∑
q�Q

ζ2(q)
′∑

r(q)

ζ1(q, r)
∑
ξ∈Σ

∑
ω∈Ω

χrq(tr(π(ξaω)))

where we introduced ζ2(q) to capture the absolute value of each term. Now apply

Cauchy-Schwarz in the ξ parameter:

|E1|2 � |Σ|
∑
ξ∈Σ

∣∣∣∣∣∣
∑
q�Q

ζ2(q)

′∑
r(q)

ζ1(q, r)
∑
ω∈Ω

χ(tr(π(ξaω)))

∣∣∣∣∣∣
2

.

The support of π(Σ) is within BX , so we replace sequences in Σ with matrices in BX

as follows

|E1|2 � |Σ|
∑

γ∈SL2(Z[i])

ϕX(γ)

∣∣∣∣∣∣
∑
q�Q

ζ2(q)

′∑
r(q)

ζ1(q, r)
∑
ω∈Ω

χrq(γ · π(aω))

∣∣∣∣∣∣
2

where we have replaced the trace of π(ξaω) with the dot product γ · π(aω) since

tr(π(ξaω)) =
∑
i,j

π(ξ)i,jπ(aω)i,j .
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Opening the square, we have

|E1|2 � |Σ|
∑
q,q′

′∑
r(q)
r′(q′)

ζ2(q)ζ1(q, r)ζ2(q′)ζ1(q′, r′)

.
∑
ω,ω′

∑
γ∈SL2(Z[i])

ϕX(γ)χrq(γ · π(aω))χr
′
q′(−γ · π(aω′))

� Qε|Σ|
∑
q,q′

′∑
r(q)
r′(q′)

∑
ω,ω′

∣∣∣∣∣∣
∑

γ∈SL2(Z[i])

ϕX(γ)χrq(γ · π(aω))χr
′
q′(−γ · π(aω′))

∣∣∣∣∣∣ .
We would like to combine χq and χq′ . Let q̂ be the least common multiple [q, q′] and

q1 = q̂/q, q′1 = q̂/q′ be the primes distinct to q and q′ respectively. If b ≡ (q1)−1(q′) and

b′ ≡ (q′1)−1(q) we have

χrq(γ · π(aω))χr
′
q′(−γ · π(aω′)) = χq̂(ξ · (rq′1b′π(aω)− r′q1bπ(aω′))).

If s := rq′1b
′π(aω)− r′q1bπ(aω′), then we may not have (s, q̂) = 1. So, remove common

factors to get (s′, q0) = 1. If q̂0 = q̂/q0 represents all the factors we removed from q̂,

then notice

rq′1b
′π(aω) ≡ r′q1bπ(aω′) mod q̂0.

Multiply (on the left) by π(a)−1 ∈ SL2(q̂0) to remove π(a). Take determinants of both

sides and since det(π(ω)) = det(π(ω′)) = 1, we get

(rq′1b
′)2 ≡ (r′q1b)

2 mod q̂0.

Now, q̂0|(q, q′) so (q1, q̂0) = (r′, q̂0) = (b, q̂0) = 1. Similarly, (q′1b
′r, q̂0) = 1. So, we can

find some u such that

q′1b
′r ≡ uq1br

′ mod q̂0

which satisfies u2 ≡ 1(q̂0) by the squared congruence relation above - there are only N ε

such u. We also have π(ω) ≡ uπ(ω′) mod q̂0.

Back to our estimate of E1, partition the sum over q and q′ via their least common
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multiple as follows:

|E1(Q, a)|2 � |Σ|
∑
q̂�Q

∑
q1q′1q̃0q̂0=q̂

∑
u(q̂0)

u2≡1(q̂0)

′∑
r(q)

∑
r′(q′)

q′1b
′r≡uq1br′(q̂0)∑

ω′∈Ω

∑
ω∈Ω

π(ω)≡uπ(ω′)(q̂0)

∣∣∣∣∣∣
∑

ξ∈SL2(Z[i])

ϕX(ξ)χq0(ξ · s)

∣∣∣∣∣∣ .
Since the support of π(Ω) is in BZ , we replace the second sum over Ω with one over

SL2(Z[i]) via ϕZ :

|E1(Q, a)|2 � |Σ|
∑
q̂�Q

∑
q1q′1q̃0q̂0=q̂

∑
u(q̂0)

u2≡1(q̂0)

′∑
r(q)

∑
r′(q′)

q′1b
′r≡uq1br′(q̂0)∑

ω′∈Ω

∑
β∈SL2(Z[i])
β≡uπ(ω′)(q̂0)

ϕZ(β)

∣∣∣∣∣∣
∑

ξ∈SL2(Z[i])

ϕX(ξ)χq0(ξ · s)

∣∣∣∣∣∣ .
Now, we apply our bounds for the smoothing function ϕX :

|E1(Q, a)|2 � |Σ|
∑
q̂�Q

∑
q1q′1q̃0q̂0=q̂

∑
u(q̂0)

u2≡1(q̂0)

′∑
r(q)

∑
r′(q′)

q′1b
′r≡uq1br′(q̂0)

|Ω|
[

Z4

N(q̂0)3
+ Z3

]
·

[
N(q0)−3/2+εX4 + N(q0)3X3

]
.

There are at most N(q) choices for r and then N(q′)
N(q̂0) choices for r′. Therefore,

|E1(Q, a)|2 � |Σ|
∑
q̂�Q

N ε
∑
q0q̂0=q̂

Q2N(q0)

N(q̂)
|Ω|
[

Z4

N(q̂0)3
+ Z3

] [
N(q0)−3/2+εX4 + N(q0)3X3

]
.

Now, we use the fact that |Ω| � Z2δ

logZ and similarly |Σ| � X2δ

logX to insert |Ω|Z−2δ and

|Σ|X−2δ:

|E1(Q, a)|2 � N εQ2|Σ|2|Ω|2(XZ)2(2−δ)
∑

Q�N(q̂)�Q2

1

N(q̂)

[
1

N(q̂)1/2
+

1

Z
+
Q8

X

]
.

So, we get the following

Theorem 20.

|Eq(Q, a)| � N εQ|Σ||Ω|(XZ)2−δ
[

1

Q1/4
+

1

Z1/2
+

Q4

X1/2

]
.

Summing over a and Q gives
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Theorem 21.

E � N ε|Π|(XZ)2−δ

[
1

Q
1/4
0

+
1

Z1/2
+
Q4

X1/2

]
.
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Chapter 10

Sieve Theorem

We have

|Uq| = β(q)|Π|+ r(1)(q) + r(2)(q) + r(q)

where

∑
N(q)<Q

|r(1)(q)| � |Π|(logQ)2
(
e−c
√

log Y +QC0 Y
−Θ
)
,

∑
N(q)<Q

|r(2)(q)| � |Π|Q
ε

Q0
,

∑
N(q)<Q

|r(q)| � N ε|Π|(XZ)2−δ

(
1

Q
1/4
0

+
1

Z1/2
+

Q4

X1/2

)
.

Recall that c, C and Θ are fixed constants coming from Theorem 18 page 54. By our

construction of the sifting set (in which Ξ and Ω depend on R but ℵ does not), as we

send R→∞ we can get δR arbitrarily close to 2 while c, C, and Θ remain constant.

For r(1)(q) and r(2)(q) we need y > 0, α0 > 0 and α0C < yΘ, where x+ y + z = 1.

For r(q) we need

α0/4 > (x+ z)(2− δ),

z/2 > (x+ z)(2− δ),

x/2 > (x+ z)(2− δ) + 8α.

Observe from the last inequality that taking x near 1 and δR near 2, we must have

α < 1/16. In order to achieve this level of distribution, we set α = 1/16−η and assume

for now that δ > 2− η. In order to have |Π| � N2δ−η we set x = 1− η.

For the remaining parameters, we set

z =
η

1 + C/Θ
, y =

zC

Θ
, α0 =

5z

6
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so that α0C < yΘ. Moreover if δ > 2− z/5 = 2− η
5(1+C/Θ) we have

z/2 > α0/4 =
5z

24
>
z

5
> 2− δ > (x+ z)(2− δ).

Hence the three inequalities for r(q) are satisfied. We get a power savings in each error

term except r(1) where we save an arbitrary power of log. This proves the level of

distribution for the following

Theorem 22. For sufficiently small η, there is a large enough R so that U has level

of distribution Q = T 1/16−η. In other words, there exists a multiplicative function

β : Z[i]→ R satisfying

∏
p

w≤N(p)<z

(1− β(p))−1 ≤ C
(

log z

logw

)2

for any 2 ≤ w < z and a decomposition

|Uq| = |Π|β(q) + r(q)

so that for all K ∑
square-free q

N(q)<Q

|r(q)| �K
|Π|

logK N
.

Moreover, when

X = N1−η

we have

|Π| � N2δ−η.

Proof. We must show that the sieve dimension is 2. The following summation formulas

for primes in arithmetic progressions are consequences of Mertens work in [Mer74]:

∑
p≤n
p≡1(4)

1

p
=

1

2
log logn+B1 +O

(
1

log n

)
,

∑
p≤n
p≡3(4)

1

p
=

1

2
log logn+B3 +O

(
1

log n

)
.
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For Gaussian primes, we only need the first equality:

∑
N(p)≤n

1

N(p)
=

1

2
+
∑
p≤n
p≡1(4)

2

p
+
∑
p≤
√
n

p≡3(4)

1

p2
= log log n+O(1).

Since β(p) ∈ (0, 1) for all p, we have

∏
w≤N(p)≤z

(1− β(p))−1 = exp

− ∑
w≤N(p)≤z

log(1− β(p))


= exp

 ∑
w≤N(p)≤z

∞∑
k=1

β(p)k

k


= exp

 ∑
w≤N(p)≤z

β(p)

 exp

 ∑
w≤N(p)≤z

∑
k>1

β(p)k

k

 .

The second exponential is negligible since

S =
∑
p

∑
k>1

β(p)k

k
≤ 1

2

∑
p

β(p)2
∞∑
k=0

β(p)k

<
1

2

∑
p

β(p)2

(1− β(p))

�
∑
p≡1(4)

2
b(p)2

1− b(p)
+
∑
p≡3(4)

b(p2)2

1− b(p2)
,

where we have defined

b(x) =
2

x

(
1 +

1

x2 − 1

)
.

Since
∑

n b(n)2 converges and (1−β(n))−1 → 1 partial summation gives S <∞. Hence

∏
w≤N(p)≤z

(1− β(p))−1 ≤ C exp

 ∑
w≤N(p)≤z

β(p)


< C exp

 ∑
w≤N(p)≤z

2

N(p)


< C exp

(
2 log

(
log z

logw

))
.

From Theorem 22 and the Fundamental Lemma of sieve theory (see Lemma 6.3 of

[IK04]) we have the following:
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Theorem 23. Define

ΠAP := {$ ∈ Π : p|(tr2(π($))− 4) =⇒ N(p) > Nα}.

We have

#ΠAP > N2δ−η.
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Chapter 11

Final Estimates

We have the lower bound

#ΠAP = #{$ ∈ Π : p|(tr2(π($))− 4) =⇒ N(p) > Nα} > N2δ−η.

On the other hand,

#{γ ∈ ΓR ∩BN :(tr2(π(γ))− 4) is square-free}

≥ #{γ ∈ ΠAP : (tr2(π(γ))− 4) is square-free}

> N2δ−η −#{γ ∈ ΠAP : (tr2(π(γ))− 4) is not square-free}.

We will examine the last term

Π�
AP := {γ ∈ ΠAP : (tr2(π(γ))− 4) is not square-free}

more closely. If γ ∈ Π�
AP , then we can find a prime p with p2|(tr2(π(γ)) − 4). On

one hand, tr2(π(γ)) − 4 factors as tr(π(γ)) ± 2 so N(p) � N1/2. On the other hand,

Π�
AP ⊂ ΠAP implies N(p) > Nα. Therefore,

#Π�
AP ≤

∑
Nα<N(p)�N1/2

∑
N(t)<N

t2−4≡0(p2)

#{γ ∈ ΓR ∩BN : tr(π(γ)) = t}

�
∑

Nα<N(p)�N1/2

N2

N(p)2
N2+ε � N4−α+ε,

where we trivially bounded the trace multiplicity, i.e.

#{γ ∈ ΓR ∩BN : tr(π(γ)) = t} < #{s ∈ BN : tr(s) = t} � N2+ε.

So, as long as 2δ − η > 4− α+ ε, we have:

Theorem 24. There is an R such that as N →∞ we have

#{γ ∈ ΓR ∩BN : tr2(π(γ))− 4 is square-free} > N2δR−η.
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We now select discriminants which contribute the most to the count above. Define

T := {t ∈ Z[i] : t2 − 4 is square-free}

and

MR(t) := #{γ ∈ ΓR : tr(π(γ)) = t}.

Proposition 4. For any η there is a large enough R so that

∑
t∈T

N(t)≤N

1{MR(t)≥N(t)2δR−2−2η} > N2δR−2−η.

Proof. The previous theorem gives

N2δR−η <
∑
t∈T

N(t)≤N

MR,N (t) =
∑
t∈T

N(t)≤N

MR,N (t)
(
1{MR,N (t)≥W} + 1{MR,N (t)<W}

)

where W is a parameter of our choice. Trivially, we have MR,N (t)� N1+ε. So,

N2δR−η � N2+ε
∑
t∈T

N(t)≤N

1{MR,N (t)≥W} +N2W.

Now, set W = N2δR−2−2η and the claim follows.

For any ε > 0, we can find η small and R large so that

2δR − 2− η > 2− ε.

The choice of R gives our compact region (geodesics do not visit the cusp when their

symbolic encodings have small entries.) We define

D := {D = t2 − 4 : t ∈ T ,MR(t) > N(t)2δR−2−2η}

which gives a subset of all fundamental discriminants. The previous claim gives us a

lower bound for the number of these discriminants:

#{d ∈ D : N(d) ≤ T} ≥ #{t ∈ T : N(t) ≤ T 1/2,MR(t) > N(t)2δR−2−2η}

> (T 1/2)2δR−2−η

> T 1−ε.
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Moreover, for each discriminant d ∈ D,if d = t2 − 4 then

MR(t) > N(t)2−ε >
√

N(D)
2−ε
� |CD|1−ε

′

Thus, after renaming constants we have proved Theorem 1, which we restate here:

Theorem 25. For any ε > 0, there is a compact region Y (ε) ⊂ Γ\H3 and a set D(ε)

of fundamental discriminants such that

#{D ∈ D(ε) : N(D) < X} �ε X
1−ε, X →∞

and for all D ∈ D(ε),

#{γ ∈ CD : γ ⊂ Y (ε)} > |CD|1−ε.
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