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ABSTRACT OF THE DISSERTATION

The Kloosterman circle method and weighted representation numbers of positive

definite quadratic forms

By EDNA LUO JONES

Dissertation Director:

Alex Kontorovich

We develop a version of the Kloosterman circle method with a bump function

that is used to provide asymptotics for weighted representation numbers of positive

definite integral quadratic forms. Unlike many applications of the Kloosterman circle

method, we explicitly state some constants in the error terms that depend on the

quadratic form. This version of the Kloosterman circle method uses Gauss sums,

Kloosterman sums, Salié sums, and a principle of nonstationary phase. We briefly

discuss a potential application of this version of the Kloosterman circle method to a

proof of a strong asymptotic local-global principle for certain Kleinian sphere pack-

ings.
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Chapter 1

Introduction

Kloosterman [Klo26] developed what is now called the Kloosterman circle method

to prove an asymptotic formula for the number of representations of an integer by a

positive definite diagonal integral quaternary quadratic form. He used ideas from the

Hardy-Littlewood circle method and adapted them to handle quaternary quadratic

forms. For an overview of the Hardy-Littlewood circle method, see [Vau97]. The

Kloosterman circle method is described Section 11.4 in [Iwa97] and in Sections 20.3

and 20.4 in [IK04].

Before developing the Kloosterman circle method, Kloosterman [Klo24] already

had used the Hardy-Littlewood circle method to determine an asymptotic for the num-

ber of representations of an integer by a positive definite diagonal integral quadratic

form in s ≥ 5 variables. However, as explained by Kloosterman in Section 1 of [Klo26],

the error term obtained from the Hardy-Littlewood circle method is too large to pro-

vide asymptotic formulas for positive definite quaternary quadratic forms.

We will use the Kloosterman circle method to obtain asymptotics for a weighted

number of representations of an integer by a positive definite integral quadratic form

in s ≥ 4 variables. In our version of the Kloosterman circle method, we will use a

bump function to ensure the convergence of our generating function for our weighted



2

representation numbers. (In [Iwa97] and [IK04], the generating function has an argu-

ment in the upper half plane. This ensures that their generating function converges.)

Our bump function provides greater flexibility for our version of the Kloosterman

circle method than the version found in [Iwa97] and [IK04].

Because we are discussing asymptotics and error terms, it will be useful to define

big O notation and related terminology. If f and g are both functions of x, then

the notation f(x) = O(g(x)) means that there exists a constant C > 0 such that

|f(x)| ≤ Cg(x) for all x ∈ D, where D is an appropriate domain that can be deduced

from the context. The constant C is called the implied constant. We take f ≪ g to

have the same meaning as f = O(g). If the implied constant depends on a parameter

α, then we write f = Oα(g) or f ≪α g.

Heath-Brown [HB96] uses the delta method to obtain an asymptotic for a weighted

number of representations of an integer by a quadratic form. However, in [HB96],

it can be difficult to determine how the implied constants depend on the quadratic

form.

In the error terms of our main result, we explicitly state some constants dependent

on a quadratic form in s variables. This is unlike what is done in [Iwa97], [IK04],

and [HB96]. The implied constants in our main result only depend on the number s,

some positive number ε, and the bump function involved.

In many applications of the circle method to representing integers by forms, one

does not need to know any of the implied constants that depend on the form. However,

there are instances in which it is useful to know some of these implied constants. For

instance, Dietmann [Die03] needed to know some constants dependent on a quadratic

form in order to provide a search bound for the smallest solution to a quadratic poly-

nomial in s variables with integer coefficients. In order to do this, Dietmann provided

an asymptotic for a certain weighted representation number in which the implied

constants only depended on s and some ε > 0. (See Theorem 2 of [Die03].) However,
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the asymptotic Dietmann gives in Theorem 2 of [Die03] does not say anything of use

for positive definite quaternary quadratic forms.

A potential application of our version of the Kloosterman circle method is proving

a strong asymptotic local-global principle for certain Kleinian sphere packings. (See

Chapter 7 for more information on a strong asymptotic local-global principle for cer-

tain Kleinian sphere packings.) Because multiple positive definite integral quaternary

quadratic forms may be involved at the same time in this potential application, we

would like to know some of the constants dependent on the quadratic forms involved.

Before we state our main result, some notation in the result should be mentioned.

LetMs(R) denote the set of s×s matrices over a ring R. The determinant of a square

matrix A is denoted by det(A).

The ring of integers modulo m is denoted by Z/mZ. The multiplicative group

of integers modulo m is denoted by (Z/mZ)×. If d ∈ (Z/mZ)×, then we denote the

multiplicative inverse of d modulo m by d∗.

The following notation is standard in analytic number theory. Let e(x) = e2πix.

In a product over p, the index of multiplication p is taken to be prime. In general, p

is taken to be prime. The gamma function is

Γ(z) =

∫ ∞

0

tz−1e−t dt

for z ∈ C with Re(z) > 0.

For a statement Y , let 1{Y } be the indicator function

1{Y } =


1 if Y holds,

0 otherwise.

For a positive integer n, the divisor function τ(n) is the number of positive divisors

of n. It is well-known that for all ε > 0, we have τ(n) ≪ε n
ε. (See, for example,
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(2.20) in [MV06].)

The space of real-valued and infinitely differentiable functions on Rs is denoted

by C∞(Rs). We call a function f in C∞(Rs) a smooth function. For a continuous

function f , define the support of f (denoted by supp(f)) to be the closure of the

set {x ∈ Rs : f(x) ̸= 0}. A function f is said to be compactly supported if supp(f)

is a compact set. The space of real-valued, infinitely differentiable, and compactly

supported functions on Rs is denoted by C∞
c (Rs). We call a function f in C∞

c (Rs) a

bump function (or a test function).

Let ψ ∈ C∞
c (Rs) be a bump function. Since ψ is compactly supported, there exists

a nonnegative real number ρ such that

supp(ψ) ⊆ {x ∈ Rs : ∥x∥ ≤ ρ}. (1.1)

Define ρψ to be the smallest nonnegative ρ that satisfies (1.1). (The number ρψ exists

since supp(ψ) is compact.)

For ψ ∈ C∞
c (Rs), X > 0, and m ∈ Rs, let ψX be defined by

ψX(m) = ψ

(
1

X
m

)
. (1.2)

Notice that supp(ψX) ⊆ {m ∈ Rs : ∥m∥ ≤ ρψX} and ρψX = ρψX. Also, ψ1 = ψ.

For a positive real number X, an integer n, and an integral quadratic form F , let

RF,ψ,X(n) be the weighted representation number defined by

RF,ψ,X(n) =
∑
m∈Zs

1{F (m)=n}ψX(m). (1.3)

The main results of this dissertation concern asymptotics for this weighted represen-

tation number.

We now define some quantities that appear in our main results. For a positive
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integer n and an integral quadratic form F in s variables, define SF (n) to be the

singular series

SF (n) =
∞∑
q=1

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
. (1.4)

The singular series will appear in the main term for our asymptotic for the weighted

representation number RF,ψ,X(n). The singular series is known to contain information

modulo q for every positive integer q. See Section 11.5 in [Iwa97] for more information

about the singular series.

For a nonsingular quadratic form F , a real number n, and a positive real num-

ber X, we define the real factor σF,ψ,∞(n,X) to be

σF,ψ,∞(n,X) = lim
ε→0+

1

2ε

∫
|F (m)− n

X2 |<ε
ψ(m) dm. (1.5)

This real factor can be viewed as a weighted density of real solutions to F (m) = n/X2.

The main result of this dissertation is the following theorem about the weighted

representation number RF,ψ,X(n).

Theorem 1.1. Suppose that n is a positive integer. Suppose that F is a positive

definite integral quadratic form in s ≥ 4 variables. Let A ∈ Ms(Z) be the Hessian

matrix of F . Let λs be largest eigenvalue of A. Let L be the smallest positive integer

such that LA−1 ∈Ms(Z).

Suppose that ψ ∈ C∞
c (Rs) is a bump function. Then for X ≥ 1/λs and ε > 0, the
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weighted representation number RF,ψ,X(n) is

RF,ψ,X(n)

= SF (n)σF,ψ,∞(n,X)Xs−2

+Oψ,s,ε

ns/2−1X(3−s)/2+ελ(3−s)/2+εs (det(A))−1/2Ls/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

X(s−1)/2+ελ(s+1)/2+ε
s Ls/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1

 .

Remark 1.2. The integer L discussed in Theorem 1.1 exists since det(A)A−1 ∈Ms(Z).

Remark 1.3. If X = n1/2, then Theorem 1.1 gives a result that is somewhat similar

to Theorem 4 in [HB96]. However, the implied constants in Theorem 1.1 only depend

on ψ, s, and ε, while the implied constants in Theorem 4 in [HB96] also depend on

the quadratic form F .

When we optimize the value of X in Theorem 1.1, we obtain the following asymp-

totic for the weighted representation number RF,ψ,X(n).

Corollary 1.4. Suppose that F is a positive definite integral quadratic form in s ≥ 4

variables. Let A ∈Ms(Z) be the Hessian matrix of F . Let λs be largest eigenvalue of

A. Let L be the smallest positive integer such that LA−1 ∈Ms(Z). Suppose that n is

a positive integer that satisfies

n ≥ λ2/(s−2)
s (det(A))1/(s−2).

Set X to be

X = n1/2λ(1−s)/(s−2)
s (det(A))1/(4−2s).
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Then the weighted representation number RF,ψ,X(n) is

RF,ψ,X(n) = SF (n)σF,ψ,∞(n,X)Xs−2

+Oψ,s,ε

(
n(s−1)/4+ελ(s−3)/(2s−4)−ε/(s−2)

s (det(A))(1−s)/(4s−8)−ε/(2s−4)

× Ls/2
∏

p|2 det(A)

(1− p−1/2)−1

)

for any ε > 0.

By fixing a particular bump function ψ in Theorem 1.1 or in Corollary 1.4, we

obtain the following corollary about the (unweighted) representation number of the

positive definite integral quadratic form F . (The representation number of a positive

definite integral form F is the number of integral solutions to F (m) = n.) This

corollary is Theorem 11.2 in [Iwa97] and Theorem 20.9 in [IK04].

Corollary 1.5. Suppose that n is a positive integer. Suppose that F is a positive

definite integral quadratic form in s ≥ 4 variables. Let A ∈ Ms(Z) be the Hessian

matrix of F . Then the number of integral solutions to F (m) = n is

|{m ∈ Zs : F (m) = n}| = SF (n)
(2π)s/2

Γ(s/2)
√
det(A)

ns/2−1 +OF,ε

(
n(s−1)/4+ε

)
for any ε > 0.

Remark 1.6. The implied constant in Corollary 1.5 depends on the quadratic form

F , because the choice of ψ depends on F .

If a bump function ψ is chosen first and then a positive definite quadratic form

F is chosen based on ψ (and possibly on n,X > 0), we can have a result in which

all of the implied constants only depend on ψ, s, and ε. We hope that such a result

can be used towards a proof of a strong asymptotic local-global principle for certain

Kleinian sphere packings.
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The remainder of this dissertation is organized as follows. In Chapter 2, we define

some notation that will be used throughout the dissertation. In Chapter 3, we set

up the Kloosterman circle method and apply it to our particular problem. Once

we apply the Kloosterman circle method to our problem, we obtain an arithmetic

part and an archimedean part. We analyze the arithmetic part in Chapter 4 and

the archimedean part in Chapter 5. In Chapter 6, we put together estimates from

previous chapters and complete our proofs of Theorem 1.1 and Corollaries 1.4 and

1.5. In Chapter 7, we briefly discuss a potential application of our version of the

Kloosterman circle method: a proof of a strong asymptotic local-global principle for

certain Kleinian sphere packings.
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Chapter 2

Some additional notation

In this chapter, we state some notation used throughout this dissertation. This is

not a comprehensive list of notation used in this dissertation, but most of the notation

used in this dissertation is listed here, in the previous chapter, or in the next chapter.

The greatest common divisor of integers a1, . . . , am is denoted by gcd(a1, . . . , am).

A vector m ∈ Zs is viewed as an s × 1 column vector. Let jth entry of a vector

m be denoted by mj. The entry in the jth row and the kth column of a matrix A is

denoted by ajk. For a vector m (or matrix A), let m⊤ (or A⊤) denote the transpose

of m (or A). A diagonal s × s matrix with diagonal entries d1, d2, . . . , ds is denoted

by diag(d1, d2, . . . , ds).

The dot product of x,y ∈ Rs is x⊤y =
∑s

j=1 xjyj and is denoted by x · y. The

Euclidean norm of a vector x is ∥x∥ =
√
x · x. For x ∈ Rs and a nonempty subset U

of Rs, define the distance between x and U to be

dist(x, U) = inf
m∈U

∥x−m∥.

We use 0 to denote the zero vector in Rs.

For a nonsingular symmetric matrix A ∈ Ms(R), we define the signature of A to

be the number of positive eigenvalues of A minus the number of negative eigenvalues
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of A. The signature of A is denoted by sgnt(A).

As is standard in analytic number theory, the natural logarithm of z is denoted

by log(z), not by ln(z).

For z ∈ C, the notation z means the complex conjugate of z. The real part of a

complex number z is denoted by Re(z).

For a nonnegative integer k and a function f : R → R with a kth derivative, we

let f (k) denote the kth derivative of f . Note that f (0) = f , f (1) = f ′, and f (2) = f ′′.

We use the notation ⌊x⌋ for the greatest integer less than or equal to x. Similarly,

⌈x⌉ denotes the least integer greater than or equal to x.

For a sufficiently nice function f : Rd → R (where d is a positive integer), define

the Fourier transform f̂ of f to be

f̂(y) =

∫
Rd
f(x)e(−x · y) dx (2.1)

for y ∈ Rd. Assuming that f is sufficiently nice, the inverse Fourier transform of f̂ is

f . That is,

f(y) =

∫
Rd
f̂(x)e(x · y) dx. (2.2)

Whenever we use the Fourier transform or the inverse Fourier transform of a func-

tion, we assume that the function is sufficiently nice. There are various ways that

“sufficiently nice” can be made precise. For example, a function is sufficiently nice if

it is a Schwartz function. (See Corollary 8.23 of [Fol99].)
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Chapter 3

Setting up the Kloosterman circle

method

In this chapter, we set up the Kloosterman circle method for our weighted repre-

sentation number RF,ψ,X(n). Unless otherwise specified, any notation mentioned here

will be used for the remainder of this dissertation.

As in the statement of Theorem 1.1, we let F be a positive definite integral

quadratic form in s ≥ 4 variables. Let A ∈ Ms(Z) be the Hessian matrix of F .

Observe that A is symmetric with each of its diagonal entries in 2Z. Also, F (x) =

1
2
x⊤Ax for any x ∈ Rs. Let {λj}sj=1 be the set of eigenvalues of A, where 0 < λ1 ≤

· · · ≤ λs. (Notice that all the eigenvalues of A are positive since A is positive definite.)

Let F ∗ be the adjoint quadratic form

F ∗(x) =
1

2
x⊤A−1x

for any x ∈ Rs. We note that A−1 might not be an integral matrix. Let L be

the smallest positive integer such that LA−1 ∈ Ms(Z). (Such an L exists since

det(A)A−1 ∈Ms(Z).)

Let ΘF,ψ,X(x) be the real analytic function with RF,ψ,X(n) as the Fourier coeffi-
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cients; i.e., let

ΘF,ψ,X(x) =
∞∑
n=0

RF,ψ,X(n)e(nx) (3.1)

for x ∈ R. Notice that ΘF,ψ,X(x+1) = ΘF,ψ,X(x). The function ΘF,ψ,X can be viewed

as a generating function for {RF,ψ,X(n)}∞n=0. We call ΘF,ψ,X a weighted theta series

of F .

Using the Fourier transform, we see that

RF,ψ,X(n) =

∫ 1

0

ΘF,ψ,X(x)e(−nx) dx. (3.2)

The fact that the nth Fourier coefficient of ΘF,ψ,X(x) is RF,ψ,X(n) suggests that

the function ΘF,ψ,X is related to F . The next lemma states how ΘF,ψ,X is directly

related to F .

Lemma 3.1. For x ∈ R and X > 0, the function ΘF,ψ,X(x) is

ΘF,ψ,X(x) =
∑
m∈Zs

e(xF (m))ψX(m).

Proof. It suffices to show that the nth Fourier coefficient of
∑

m∈Zs e(xF (m))ψX(m)

is RF,ψ,X(n). By the Fubini-Tonelli theorem, the nth Fourier coefficient of∑
m∈Zs e(xF (m))ψX(m) is

∫ 1

0

e(−nx)
∑
m∈Zs

e(xF (m))ψX(m) dx =
∑
m∈Zs

ψX(m)

∫ 1

0

e(−nx) e(xF (m)) dx

=
∑
m∈Zs

ψX(m)

∫ 1

0

e(x(F (m)− n)) dx.



13

Now

∫ 1

0

e(x(F (m)− n)) dx = 1{F (m)−n=0} = 1{F (m)=n},

so

∫ 1

0

e(−nx)
∑
m∈Zs

e(xF (m))ψX(m) dx =
∑
m∈Zs

ψX(m)1{F (m)=n}

= RF,ψ,X(n).

3.1 Using a Farey dissection

To use the Kloosterman circle method, we want to break up a unit interval (say

[z, z + 1) for z ∈ C) into smaller intervals (or “arcs”) using Farey sequences. This

unit interval is where the “circle” in the “circle method” comes from. A unit interval

is sometimes considered a circle since e([z, z + 1)) is a circle in the complex plane.

For Q ≥ 1, the Farey sequence FQ of order Q is the increasing sequence of all

reduced fractions a
q
with 1 ≤ q ≤ Q and gcd(a, q) = 1. (Traditionally, Q is required

to be an integer, but we will find that allowing Q to be not an integer will remove

some technicalities later. See Section 6.6.) An element of FQ is called a Farey point.

We will state some well-known properties of FQ. For more background on Farey

sequences of order Q, please see Chapter III of [HW08] or pp. 451–452 of [IK04].

Let a′

q′
< a

q
< a′′

q′′
be adjacent Farey points of order Q (so that q′, q, q′′ ≤ Q and a

q

is the only fraction in FQ that is greater than a′

q′
and less than a′′

q′′
). The denominators

q′, q′′ are determined by the conditions:

Q− q < q′ ≤ Q, aq′ ≡ 1 (mod q) , (3.3)

Q− q < q′′ ≤ Q, aq′′ ≡ −1 (mod q) . (3.4)
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For a positive integer q and an integer a coprime to q, let ja,q be the interval

ja,q =

[
a

q
− q

q(q + q′)
,
a

q
+

1

q(q + q′′)

)
, (3.5)

where a′

q′
< a

q
< a′′

q′′
are adjacent Farey points of order Q. The interval ja,q is called a

Farey arc. It is known that

[
− 1

1 + ⌊Q⌋
, 1− 1

1 + ⌊Q⌋

)
=

⌊Q⌋⊔
q=1

q−1⊔
a=0

gcd(a,q)=1

ja,q. (3.6)

We say that the set

{ja,q}1≤q≤Q, 0≤a≤q−1, gcd(a,q)=1 (3.7)

of Farey arcs is a Farey dissection of order Q of the circle.

We now have all the tools to express an idea that is crucial in the the Kloosterman

circle method.

Lemma 3.2. Let f : R → C be a periodic function of period 1 and with real Fourier

coefficients (so that f(x) = f(−x) for all x ∈ R). Then

∫ 1

0

f(x) dx = 2Re


∑

1≤q≤Q

∫ 1
qQ

0

∑
Q<d≤q+Q
qdx<1

gcd(d,q)=1

f

(
x− d∗

q

)
dx

 (3.8)

= 2Re

 ∑
1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1

0

1

qd
f

(
x

qd
− d∗

q

)
dx

 , (3.9)

where d∗ is the multiplicative inverse of d modulo q.

Remark 3.3. When analytic number theorists talk about using the Kloosterman circle
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method, they often mean that they are using something similar to Lemma 3.2. One

of the most notable applications of Lemma 3.2 is writing the function 1{n=0} as a sum

of exponential functions by having f(x) = e(nx) in (3.9). (See Proposition 11.1 in

[Iwa97] and Proposition 20.7 in [IK04].)

Remark 3.4. We note that Lemma 3.2 is general enough to work with a variety

of representation problems by having f(x) = e(−nx)
∑

m∈ZR(m)e(mx) for a given

representation number R(n). Notice that Lemma 3.2 is applicable to the function

f(x) = e(−nx)ΘF,ψ,X(x) and so can give us an expression of RF,ψ,X(m) containing

an integral with a Farey dissection.

Proof of Lemma 3.2. Because f has a period of 1, we have the following equality of

integrals:

∫ 1

0

f(x) dx =

∫ 1− 1
1+⌊Q⌋

− 1
1+⌊Q⌋

f(x) dx.

Using our Farey dissection of
[
− 1

1+⌊Q⌋ , 1−
1

1+⌊Q⌋

)
, notice that

∫ 1

0

f(x) dx =
∑

1≤q≤Q

q−1∑
a=0

gcd(a,q)=1

∫
ja,q

f(x) dx

=
∑

1≤q≤Q

q−1∑
a=0

gcd(a,q)=1

∫ a
q
+ 1
q(q+q′′)

a
q
− 1
q(q+q′)

f(x) dx

=
∑

1≤q≤Q

q−1∑
a=0

gcd(a,q)=1

∫ 1
q(q+q′′)

− 1
q(q+q′)

f

(
x+

a

q

)
dx

by letting x 7→ x+ a/q in the last integral.

By breaking up and rearranging the integrals, we obtain

∫ 1

0

f(x) dx = J1 + J2, (3.10)
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where

J1 =
∑

1≤q≤Q

q−1∑
a=0

gcd(a,q)=1

∫ 0

− 1
q(q+q′)

f

(
x+

a

q

)
dx

and

J2 =
∑

1≤q≤Q

q−1∑
a=0

gcd(a,q)=1

∫ 1
q(q+q′′)

0

f

(
x+

a

q

)
dx.

In J1, we let d = q + q′. By (3.3), the expression d = q + q′ is equivalent to the

combination of conditions Q < d ≤ q + Q and a ≡ d∗ (mod q). Thus, when we use

the periodicity of f , we have

J1 =
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 0

− 1
qd

f

(
x+

d∗

q

)
dx.

We now map x 7→ −x, so

J1 =
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 0

1
qd

−f
(
−x+ d∗

q

)
dx

=
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
−x+ d∗

q

)
dx

=
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
−
(
x− d∗

q

))
dx.
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Since f(x) = f(−x) for all x ∈ R, we conclude that

J1 =
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
x− d∗

q

)
dx

=
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
x− d∗

q

)
dx. (3.11)

In J2, we let d = q + q′′. By (3.4), the expression d = q + q′′ is equivalent to the

combination of conditions Q < d ≤ q +Q and a ≡ −d∗ (mod q). Thus, when we use

the periodicity of f , we have

J2 =
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
x− d∗

q

)
dx. (3.12)

Substituting (3.11) and (3.12) into (3.10), we obtain

∫ 1

0

f(x) dx =
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
x− d∗

q

)
dx

+
∑

1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
x− d∗

q

)
dx

= 2Re

 ∑
1≤q≤Q

∑
Q<d≤q+Q
gcd(d,q)=1

∫ 1
qd

0

f

(
x− d∗

q

)
dx

 . (3.13)

By switching the order of summation and integration in (3.13), we deduce (3.8). By

mapping x 7→ x
qd

in (3.13), we obtain (3.9).

We now apply Lemma 3.2 to (3.2) to decompose the “circle.” Taking f(x) =
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ΘF,ψ,X(x)e(−nx) in (3.8) of Lemma 3.2, we see that

RF,ψ,X(n) = 2Re


∑

1≤q≤Q

∫ 1
qQ

0

∑
Q<d≤q+Q
qdx<1

gcd(d,q)=1

ΘF,ψ,X

(
x− d∗

q

)
e

(
−n
(
x− d∗

q

))
dx



= 2Re


∑

1≤q≤Q

∫ 1
qQ

0

e(−nx)
∑

Q<d≤q+Q
qdx<1

gcd(d,q)=1

ΘF,ψ,X

(
x− d∗

q

)
e

(
n
d∗

q

)
dx

 .

(3.14)

The appearance of ΘF,ψ,X (x− d∗/q) leads us to try to evaluate ΘF,ψ,X (x− d∗/q) in

the next section.

3.2 Examining a weighted theta series

Due to the appearance of ΘF,ψ,X (x− d∗/q) in our expression ofRF,ψ,X(n) in (3.14),

we would like to evaluate the weighted theta series ΘF,ψ,X (x− d∗/q). By Lemma 3.1,

we see that

ΘF,ψ,X

(
x− d∗

q

)
=
∑
m∈Zs

e

((
x− d∗

q

)
F (m)

)
ψX(m)

=
∑
m∈Zs

e

(
−d

∗

q
F (m)

)
e(xF (m))ψX(m).

Because the value e
(
−d∗

q
F (m)

)
only depends on m modulo q, we would like to

split the sum over m ∈ Zs into sums over congruence classes modulo q. Doing this
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results in the following:

ΘF,ψ,X

(
x− d∗

q

)
=

∑
h∈(Z/qZ)s

∑
m≡h (mod q)

e

(
−d

∗

q
F (m)

)
e(xF (m))ψX(m)

=
∑

h∈(Z/qZ)s
e

(
−d

∗

q
F (h)

) ∑
m≡h (mod q)

e(xF (m))ψX(m).

By replacing m by h+ qm (where m ∈ Zs), we obtain

ΘF,ψ,X

(
x− d∗

q

)
=

∑
h∈(Z/qZ)s

e

(
−d

∗

q
F (h)

) ∑
m∈Zs

e(xF (h+ qm))ψX(h+ qm).

(3.15)

3.3 Using Poisson summation

To obtain asymptotics on ΘF,ψ,X (x− d∗/q), it looks like we need to estimate

∑
m∈Zs

e(xF (h+ qm))ψX(h+ qm). (3.16)

However, if we could estimate (3.16) directly, we probably would have estimated

ΘF,ψ,X(x− d∗/q) directly in the first place. Since we did not, we need to use another

tool. To understand (3.16), we use Poisson summation in the next lemma. Poisson

summation allows us to concentrate the bulk of the sum into one term.

Lemma 3.5. For h ∈ (Z/qZ)s, x ∈ R, and positive q ∈ Z, we have

∑
m∈Zs

e(xF (h+ qm))ψX(h+ qm)

=
∑
r∈Zs

1

qs
e

(
1

q
h · r

)∫
Rs

e

(
xF (m)− 1

q
m · r

)
ψX(m) dm.
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Proof. We use the Poisson summation formula

∑
m∈Zs

f(m) =
∑
r∈Zs

f̂(r), (3.17)

where f̂ is the Fourier transform of f .

The Fourier transform of f(m) = e(xF (h+ qm))ψX(h+ qm) is

f̂(ℓ) =

∫
Rs

e(xF (h+ qm))ψX(h+ qm)e(−m · r) dm.

Map m to 1
q
(m− h) to obtain

f̂(r) =
1

qs
e

(
1

q
h · r

)∫
Rs

e

(
xF (m)− 1

q
m · r

)
ψX(m) dm.

Putting this into the Poisson summation formula (3.17), we obtain the result of

this lemma.

By applying Lemma 3.5 to (3.15), we obtain

ΘF,ψ,X

(
x− d∗

q

)
=

∑
h∈(Z/qZ)s

e

(
−d

∗

q
F (h)

)∑
r∈Zs

1

qs
e

(
1

q
h · r

)

×
∫
Rs

e

(
xF (m)− 1

q
m · r

)
ψX(m) dm

=
∑
r∈Zs

1

qs

∑
h∈(Z/qZ)s

e

(
1

q
(−d∗F (h) + h · r)

)

×
∫
Rs

e

(
xF (m)− 1

q
m · r

)
ψX(m) dm

=
∑
r∈Zs

1

qs
Gr(−d∗, q)IF,ψ(x,X, r, q), (3.18)
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where Gr(d, q) is the Gauss sum

Gr(d, q) =
∑

h∈(Z/qZ)s
e

(
1

q
(dF (h) + h · r)

)
(3.19)

and

IF,ψ(x,X, r, q) =
∫
Rs

e

(
xF (m)− 1

q
m · r

)
ψX(m) dm. (3.20)

Substituting (3.18) into (3.14), we see that

RF,ψ,X(n)

= 2Re


∑

1≤q≤Q

∫ 1
qQ

0

e(−nx)
∑

Q<d≤q+Q
qdx<1

gcd(d,q)=1

∑
r∈Zs

1

qs
Gr(−d∗, q)IF,ψ(x,X, r, q)e

(
n
d∗

q

)
dx

 .

Switching the order of the r and d sums, we obtain

RF,ψ,X(n) = 2Re

( ∑
1≤q≤Q

1

qs

∫ 1
qQ

0

e(−nx)
∑
r∈Zs

IF,ψ(x,X, r, q)Tr(q, n;x) dx

)
, (3.21)

where

Tr(q, n;x) =
∑

Q<d≤q+Q
qdx<1

gcd(d,q)=1

e

(
n
d∗

q

)
Gr(−d∗, q). (3.22)

We call the expression Tr(q, n;x) the arithmetic part, because Tr(q, n;x) contains

information modulo q. We call the integral IF,ψ(x,X, r, q) the archimedean part. We

will use Gauss sums, Kloosterman sums, and Salié sums to obtain estimates on the

arithmetic part Tr(q, n;x). We will use a principle of nonstationary phase to obtain

estimates on the archimedean part IF,ψ(x,X, r, q).
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Chapter 4

Analyzing the arithmetic part

In this chapter, we analyze the arithmetic part Tr(q, n;x). We do this by complet-

ing the sum Tr(q, n;x), using Gauss sums, and obtaining estimates of our complete

sums. An upper bound for the absolute value of the arithmetic part is given in the

last section of this chapter.

4.1 Completing the sum

In general, finding the value of a sum of a periodic function over an arbitrary

range of integer is more difficult than finding the value of a sum of a periodic function

over its period. In our calculation of RF,ψ,X(n), we currently have the sum Tr(q, n;x).

We notice that Tr(q, n;x) is an incomplete sum since it is a sum over d over the range

(Q, q + Q] such that qdx < 1 and d is coprime to q. We use the following lemma to

complete this sum so that a sum over the period of the summand function appears.

Lemma 4.1. For r ∈ Zs, positive q ∈ Z, n ∈ Z, and x ∈ R, the sum Tr(q, n;x) is

Tr(q, n;x) =
∑

ℓ (mod q)

γ(ℓ)K(ℓ, n, r; q),
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where

γ(ℓ) =
1

q

∑
Q<b≤min{q+Q,⌈1/(qx)−1⌉}

e

(
−bℓ
q

)

and

K(ℓ, n, r; q) =
∑

d∈(Z/qZ)×
e

(
ℓd+ nd∗

q

)
Gr(−d∗, q).

Remark 4.2. Note that K(ℓ, n, r; q) is a complete sum, that is, it is a sum that is over

the entire period of its summand function.

Before we prove Lemma 4.1, we state a formula related to an indicator function

that comes up frequently in number theory and will appear in the proof of Lemma 4.1.

Lemma 4.3. Let a, q ∈ Z and q > 0. Then

∑
j∈Z/qZ

e

(
aj

q

)
= q1{a≡0 (mod q)}

=


q if a ≡ 0 (mod q),

0 otherwise.

Proof. This lemma follows from the fact that the exponential sum appearing in the

formula can be viewed as a geometric sum with j ranging from 0 to q−1. Alternatively,

since e
(
aj
q

)
is a character of the additive group of Z/qZ, the formula also follows from

the orthogonality relations for characters [Apo76, Theorem 6.10].

Using Lemma 4.3, we now give a proof of Lemma 4.1.

Proof of Lemma 4.1. We want to split up the sum Tr(q, n;x) into sums over residue
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classes. To do this, we note the following fact: For any integer d,

1{gcd(d,q)=1} =
∑

b∈(Z/qZ)×
1{b≡d (mod q)} =

∑
b∈(Z/qZ)×

1

q

∑
ℓ (mod q)

e

(
ℓb− ℓd

q

)
. (4.1)

The last equality follows from Lemma 4.3 with a = b− d and j = ℓ.

We rewrite (3.22) as

Tr(q, n;x) =
∑

Q<d≤q+Q
d<1/(qx)
gcd(d,q)=1

e

(
n
d∗

q

)
Gr(−d∗, q)

=
∑

Q<d≤min{q+Q,⌈1/(qx)−1⌉}
gcd(d,q)=1

e

(
n
d∗

q

)
Gr(−d∗, q)

=
∑

Q<d≤min{q+Q,⌈1/(qx)−1⌉}

1{gcd(d,q)=1}e

(
n
d∗

q

)
Gr(−d∗, q).

By applying (4.1) to the last expression, we obtain

Tr(q, n;x) =
∑

Q<d≤min{q+Q,⌈1/(qx)−1⌉}

∑
b∈(Z/qZ)×

1{b≡d (mod q)}e

(
nd∗

q

)
Gr(−d∗, q).

Because 1{b≡d (mod q)}e
(
nd∗

q

)
Gr(−d∗, q) is periodic modulo q and the inner sum only

contributes if b ≡ d (mod q), we can change some of the d’s to b’s to obtain

Tr(q, n;x) =
∑

Q<d≤min{q+Q,⌈1/(qx)−1⌉}

∑
b∈(Z/qZ)×

1{b≡d (mod q)}e

(
nb∗

q

)
Gr(−b∗, q).
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Applying (4.1) again, we see that

Tr(q, n;x) =
∑

Q<d≤min{q+Q,⌈1/(qx)−1⌉}

∑
b∈(Z/qZ)×

1

q

∑
ℓ (mod q)

e

(
ℓb− ℓd

q

)
e

(
nb∗

q

)
Gr(−b∗, q)

=
∑

ℓ (mod q)

1

q

∑
Q<d≤min{q+Q,⌈1/(qx)−1⌉}

e

(
−ℓd
q

)

×
∑

b∈(Z/qZ)×
e

(
ℓb+ nb∗

q

)
Gr(−b∗, q)

=
∑

ℓ (mod q)

γ(ℓ)K(ℓ, n, r; q).

We have now separated Tr(q, n;x) into a sum γ(ℓ) and a complete sumK(ℓ, n, r; q).

We will examine the sum K(ℓ, n, r; q) more in later sections. For now, we will focus

on γ(ℓ).

Lemma 4.4. If |ℓ| ≤ q
2
, then

|γ(ℓ)| ≤ (1 + |ℓ|)−1.

Proof. Let Y = min{q +Q, ⌈1/(qx)− 1⌉}.

If ℓ = 0, then

γ(ℓ) =
1

q

∑
Q<b≤Y

e

(
−bℓ
q

)
=

1

q

∑
Q<b≤Y

1 =
⌊Y −Q⌋

q
≤ ⌊(q +Q)−Q⌋

q
=
q

q
= 1

since Y ≤ q +Q by definition. Thus, γ(ℓ) ≤ (1 + |ℓ|)−1 when ℓ = 0.
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Now suppose that 0 < |ℓ| ≤ q
2
. Then

γ(ℓ) =
1

q

∑
Q<b≤Y

e

(
−bℓ
q

)
=

1

q

∑
Q<b≤Y

(
e

(
− ℓ
q

))b
=

1

q
e

(
−ℓ(Q+ 1)

q

) ∑
0≤b≤⌊Y−Q−1⌋

(
e

(
− ℓ
q

))b

=
1

q
e

(
−ℓ(Q+ 1)

q

) 1− e
(
− ℓ
q

)⌊Y−Q⌋

1− e
(
− ℓ
q

) .

By multiplying the numerator and the denominator by e
(
ℓ
2q

)
, we obtain

γ(ℓ) =
1

q
e

(
−ℓ(Q+ 1)

q

)
e

(
ℓ

2q

) 1− e
(
− ℓ
q

)⌊Y−Q⌋

e
(
ℓ
2q

)
− e
(
− ℓ

2q

)
=

1

q
e

(
−ℓ(Q+ 1)

q

)
e

(
ℓ

2q

) 1− e
(
− ℓ
q

)⌊Y−Q⌋

2i sin
(
πℓ
q

) (4.2)

since sin(2πx) =
e(x)− e(−x)

2i
. By taking absolute values, we obtain

|γ(ℓ)| = 1

q

∣∣∣∣1− e
(
− ℓ
q

)⌊Y−Q⌋
∣∣∣∣∣∣∣2 sin(πℓq )∣∣∣ .

Since

∣∣∣∣1− e
(
− ℓ
q

)⌊Y−Q⌋
∣∣∣∣ ≤ 2, we have

|γ(ℓ)| ≤ 1

q

1∣∣∣sin(πℓq )∣∣∣ . (4.3)

For |x| ≤ π
2
, we have | sin(x)| ≥ 2|x|

π
. Because |ℓ| ≤ q

2
, the statement

∣∣∣πℓq ∣∣∣ ≤ π
2
is
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true. Therefore,

∣∣∣∣sin(πℓq
)∣∣∣∣ ≥ 2|ℓ|

q
.

Substituting this into (4.3), we see that

|γ(ℓ)| ≤ 1

2|ℓ|
.

Observe that (2|ℓ|)−1 ≤ (1 + |ℓ|)−1 since |ℓ| ≥ 1. Therefore, γ(ℓ) ≤ (1 + |ℓ|)−1

when 0 < |ℓ| ≤ q
2
.

Combining this result with the result when ℓ = 0, we have γ(ℓ) ≤ (1 + |ℓ|)−1.

4.2 Using Gauss sums

To examine K(ℓ, n, r; q), we first analyze the Gauss sum Gr(d, q). We first develop

a bound for Gr(d, q) when d and q are coprime.

Lemma 4.5. If gcd(d, q) = 1 and r ∈ Zs, then

|Gr(d, q)| ≤ (gcd(L, q))s/2qs/2.

Proof. We have

|Gr(d, q)|2 =

 ∑
h∈(Z/qZ)s

e

(
1

q
(dF (h) + h · r)

) ∑
j∈(Z/qZ)s

e

(
1

q
(dF (j) + j · r)

)
=

 ∑
h∈(Z/qZ)s

e

(
1

q
(dF (h) + h · r)

) ∑
j∈(Z/qZ)s

e

(
−1

q
(dF (j) + j · r)

)
=

∑
h∈(Z/qZ)s

∑
j∈(Z/qZ)s

e

(
1

q
(d(F (h)− F (j)) + (h− j) · r)

)
. (4.4)
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Let k = h− j. Then

F (h) = F (j+ k)

=
1

2
(j+ k)⊤A(j+ k)

=
1

2
j⊤Aj+

1

2
j⊤Ak+

1

2
k⊤Aj+

1

2
k⊤Ak. (4.5)

Because k⊤Aj ∈ R and A is symmetric, we have

k⊤Aj = (k⊤Aj)⊤

= j⊤A⊤k

= j⊤Ak.

Substituting this into (4.5), we obtain

F (h) = F (j) + j⊤Ak+ F (k)

= F (j) + j · (Ak) + F (k).

Using this in (4.4), we see that

|Gr(d, q)|2 =
∑

k∈(Z/qZ)s

∑
j∈(Z/qZ)s

e

(
1

q
(d(j · (Ak) + F (k)) + k · r)

)

=
∑

k∈(Z/qZ)s
e

(
1

q
(dF (k) + k · r)

) ∑
j∈(Z/qZ)s

e

(
d

q
j · (Ak)

)
. (4.6)
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Now let w = Ak. Then

∑
j∈(Z/qZ)s

e

(
d

q
j · (Ak)

)
=

∑
j∈(Z/qZ)s

e

(
d

q
j ·w

)

=
∑

j∈(Z/qZ)s
e

(
d

q

s∑
ℓ=1

jℓwℓ

)

=
∑

j∈(Z/qZ)s

s∏
ℓ=1

e

(
dwℓjℓ
q

)
. (4.7)

Because j runs over all vectors in (Z/qZ)s, we have

∑
j∈(Z/qZ)s

s∏
ℓ=1

e

(
dwℓjℓ
q

)
=

s∏
ℓ=1

 ∑
jℓ∈Z/qZ

e

(
dwℓjℓ
q

) . (4.8)

By Lemma 4.3, this expression is equal to

s∏
ℓ=1

 ∑
jℓ∈Z/qZ

e

(
dwℓjℓ
q

) =
s∏
ℓ=1

(
q1{dwℓ≡0 (mod q)}

)
= qs

s∏
ℓ=1

1{dwℓ≡0 (mod q)}. (4.9)

Because d is coprime to q, the last expression is equal to

qs
s∏
ℓ=1

1{dwℓ≡0 (mod q)} = qs
s∏
ℓ=1

1{wℓ≡0 (mod q)}

= qs1{w≡0 (mod q)}

= qs1{Ak≡0 (mod q)}. (4.10)

Combining (4.6), (4.7), (4.8), (4.9), and (4.10), we obtain

|Gr(d, q)|2 = qs
∑

k∈(Z/qZ)s
e

(
1

q
(dF (k) + k · r)

)
1{Ak≡0 (mod q)}.
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Therefore,

|Gr(d, q)|2 =

∣∣∣∣∣∣qs
∑

k∈(Z/qZ)s
e

(
1

q
(dF (k) + k · r)

)
1{Ak≡0 (mod q)}

∣∣∣∣∣∣
≤ qs

∑
k∈(Z/qZ)s

∣∣∣∣e(1

q
(dF (k) + k · r)

)
1{Ak≡0 (mod q)}

∣∣∣∣
= qs

∑
k∈(Z/qZ)s

1{Ak≡0 (mod q)}

= qs |{k ∈ (Z/qZ)s : Ak ≡ 0 (mod q)}| . (4.11)

Recall that L is the smallest positive integer such that LA−1 ∈Ms(Z). Thus,

|{k ∈ (Z/qZ)s : Ak ≡ 0 (mod q)}| ≤
∣∣{k ∈ (Z/qZ)s : LA−1Ak ≡ LA−10 (mod q)

}∣∣
= |{k ∈ (Z/qZ)s : Lk ≡ 0 (mod q)}|

= (gcd(L, q))s.

Substituting this into (4.11), we conclude that

|Gr(d, q)|2 ≤ qs(gcd(L, q))s.

By taking square roots of the previous inequality, we obtain the conclusion of this

lemma.

Lemma 4.5 gives an upper bound for the absolute value of the Gauss sum Gr(d, q).

If possible, we would like some exact calculations for the Gauss sum Gr(d, q). In order

to do that, we need to look some other Gauss sums called quadratic Gauss sums.

Let G

(
d

q

)
be the quadratic Gauss sum

G

(
d

q

)
=

∑
h (mod q)

e

(
dh2

q

)
.
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For an odd integer q, let

εq =


1 if q ≡ 1 (mod 4),

i if q ≡ 3 (mod 4).

The following lemma is a rephrasing of Theorem 1.5.2 in [BEW98] and gives a

value for G

(
d

q

)
when q is odd and d is coprime to q.

Lemma 4.6 (Theorem 1.5.2 in [BEW98]). Let d be an integer and q be a positive

odd integer. If gcd(d, q) = 1, then

G

(
d

q

)
=

(
d

q

)
εq
√
q,

where

(
·
q

)
is the Jacobi symbol.

To use Lemma 4.6, we need to be able to diagonalize the Hessian matrix A modulo

q when q is coprime 2 det(A). We will actually be able to diagonalize A modulo q

whenever q is odd. To begin with, our next lemma says that you can diagonalize A

when q is an odd prime power. It is a rephrasing of Theorem 31 in [Wat60].

Lemma 4.7 (Theorem 31 in [Wat60]). Let F be an integral quadratic form with a

Hessian matrix A. Suppose that p is an odd prime and k is a positive integer. Then

there exist D,P ∈Ms(Z) such that D is diagonal, p ∤ det(P ), and

D ≡ P⊤AP
(
mod pk

)
. (4.12)

With Lemma 4.8, we have what we need to diagonalize the Hessian matrix A

modulo q when q is odd.

Lemma 4.8. Let F be an integral quadratic form with a Hessian matrix A. Suppose

that q is odd. Then there exist D,P ∈ Ms(Z) such that D is diagonal, det(P ) and q
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are coprime, and

D ≡ P⊤AP (mod q) . (4.13)

Proof. If q = 1, then there is nothing to prove. (Notice that every integer is congruent

to any integer modulo 1, and the greatest common divisor of 1 and any integer is 1.)

If q is an odd prime power (say q = pk), then we can apply Lemma 4.7 directly

and obtain the result of this lemma.

Now suppose that q =
∏ℓ

j=1 p
ej
j , where the pj are distinct primes. As already

mentioned, for each j, we can find Dj, Pj ∈ Ms(Z) such that Dj is diagonal, det(Pj)

and q are coprime, and (4.13) is satisfied with D = Dj, P = Pj, and q = p
ej
j . By

applying the Chinese remainder theorem to create D from the Dj and P from the Pj,

we obtain the result of this lemma.

Since we have now developed the necessary tools, we explicitly compute Gr(d, q)

when q is coprime to 2 det(A)d.

Lemma 4.9. Suppose that gcd(q, 2 det(A)d) = 1 and r ∈ Zs. Choose α ∈ Z so that

αA−1 ∈ Ms(Z) and gcd(α, q) = 1. (Such an α exists since det(A)A−1 ∈ Ms(Z) and

gcd(det(A), q) = 1.) Then

Gr(d, q) =

(
det(A)

q

)(
εq

(
2d

q

)
√
q

)s
e

(
−d∗

q
2∗α∗2αF ∗(r)

)
,

where d∗, α∗, 2∗ ∈ Z/qZ are such that dd∗ ≡ αα∗ ≡ 2(2∗) ≡ 1 (mod q).

Remark 4.10. Lemma 4.9 is similar to Lemma 20.13 in [IK04]. However, the lemmas

concern slightly different quantities. Also, the statement of Lemma 20.13 in [IK04]

has a few errors that we correct in our statement of Lemma 4.9.

Proof of Lemma 4.9. We apply Lemma 4.8 to obtain D,P ∈ Ms(Z) such that D is
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diagonal, gcd(det(P ), q) = 1, and

D ≡ P⊤AP (mod q) . (4.14)

We have

Gr(d, q) =
∑

h∈(Z/qZ)s
e

(
1

q
(dF (h) + h · r)

)

=
∑

h∈(Z/qZ)s
e

(
1

q

(
1

2
dh⊤Ah+ h⊤r

))

=
∑

h∈(Z/qZ)s
e

(
1

q

(
2∗dh⊤Ah+ h⊤r

))
.

(Note that we are able to use 2∗ instead of 1
2
, because 2 divides x⊤Ax for all x ∈ Zs.)

We do a change of variables h = Pk to obtain

Gr(d, q) =
∑

k∈(Z/qZ)s
e

(
1

q

(
2∗d(Pk)⊤APk+ (Pk)⊤r

))

=
∑

k∈(Z/qZ)s
e

(
1

q

(
2∗dk⊤P⊤APk+ k⊤P⊤r

))

=
∑

k∈(Z/qZ)s
e

(
2∗

q

(
dk⊤Dk+ 2k · (P⊤r)

))
. (4.15)
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Let D = diag(d1, d2, . . . , ds) and b = P⊤r. Then (4.15) becomes

Gr(d, q) =
∑

k∈(Z/qZ)s
e

(
2∗

q

(
dk⊤Dk+ 2k · b

))

=
∑

k∈(Z/qZ)s
e

(
2∗

q

s∑
j=1

(
ddjk

2
j + 2bjkj

))

=
∑

k∈(Z/qZ)s

s∏
j=1

e

(
2∗

q

(
ddjk

2
j + 2bjkj

))

=
s∏
j=1

 ∑
kj∈Z/qZ

e

(
2∗

q

(
ddjk

2
j + 2bjkj

)) .

Note that each dj is coprime to q since q is coprime to det(D) =
∏s

j=1 dj. (This is

true, because q is coprime to det(A) and det(P ) and we have (4.14).) Let d∗j be the

multiplicative inverse of dj modulo q. Then by completing the square, we obtain

Gr(d, q) =
s∏
j=1

 ∑
kj∈Z/qZ

e

(
2∗ddj
q

(
k2j + 2d∗d∗jbjkj

))
=

s∏
j=1

 ∑
kj∈Z/qZ

e

(
2∗ddj
q

(
(kj + d∗d∗jbj)

2 − (d∗d∗jbj)
2
))

=
s∏
j=1

 ∑
kj∈Z/qZ

e

(
2∗

q

(
ddj(kj + d∗d∗jbj)

2 − d∗d∗jb
2
j

))
=

s∏
j=1

e

(−2∗d∗d∗jb
2
j

q

) ∑
kj∈Z/qZ

e

(
2∗ddj
q

(kj + d∗d∗jbj)
2

) . (4.16)

Now we make a change of variables ℓj = kj + d∗d∗jbj to see that

∑
kj∈Z/qZ

e

(
2∗ddj
q

(kj + d∗d∗jbj)
2

)
=

∑
ℓj∈Z/qZ

e

(
2∗ddj
q

ℓ2j

)
.
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We apply Lemma 4.6 to obtain

∑
kj∈Z/qZ

e

(
2∗ddj
q

(kj + d∗d∗jbj)
2

)
=

(
2∗ddj
q

)
εq
√
q.

Because

(
2∗

q

)
=

(
2

q

)
, we have

∑
kj∈Z/qZ

e

(
2∗ddj
q

(kj + d∗d∗jbj)
2

)
=

(
2ddj
q

)
εq
√
q.

Substituting this into (4.16), we see that

Gr(d, q) =
s∏
j=1

e

(−2∗d∗d∗jb
2
j

q

)(
2ddj
q

)
εq
√
q

=

(∏s
j=1 dj

q

)((
2d

q

)
εq
√
q

)s s∏
j=1

e

(−2∗d∗d∗jb
2
j

q

)

=

(
det(D)

q

)((
2d

q

)
εq
√
q

)s
e

(
−d∗

q
2∗

s∑
j=1

d∗jb
2
j

)
. (4.17)

Because D ≡ P⊤AP (mod q), we know that det(D) ≡ det(A) det(P )2 (mod q).

Thus,

(
det(D)

q

)
=

(
det(A) det(P )2

q

)
=

(
det(A)

q

)
, (4.18)

and

Gr(d, q) =

(
det(A)

q

)((
2d

q

)
εq
√
q

)s
e

(
−d∗

q
2∗

s∑
j=1

d∗jb
2
j

)
. (4.19)

For a matrix B that is invertible over Z/qZ, let B∗ be the multiplicative inverse
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of B modulo q. Note that D∗ = diag(d∗1, . . . , d
∗
s) and

D∗ = (P⊤AP )
∗
= P ∗A∗(P⊤)

∗
.

Therefore,

s∑
j=1

d∗jb
2
j ≡ b⊤D∗b (mod q)

≡ b⊤P ∗A∗(P⊤)
∗
b (mod q) .

Since b = P⊤r, we have

s∑
j=1

dj
∗b2j ≡ (P⊤r)⊤P ∗A∗(P⊤)

∗
P⊤r (mod q)

≡ r⊤PP ∗A∗(P⊤)
∗
P⊤r (mod q)

≡ r⊤A∗r (mod q) . (4.20)

A short calculation shows that

A∗ ≡ α∗αA−1 (mod q) . (4.21)

Substituting this into (4.20), we obtain

s∑
j=1

d∗jb
2
j ≡ α∗αr⊤A−1r (mod q)

≡ 2α∗αF ∗(r) (mod q) .

We substitute this into (4.19) and conclude that

Gr(d, q) =

(
det(A)

q

)((
2d

q

)
εq
√
q

)s
e

(
−2∗d∗

q
2α∗αF ∗(r)

)
.
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4.3 Decomposing some complete sums

In the previous section, we derived some estimates for the Gauss sum Gr(d, q). We

would like to apply these estimates to the complete sum K(ℓ, n, r; q). However, we

have additional estimates for the Gauss sum when q is coprime to 2 det(A). We would

like to exploit as much as we can from these estimates, so we split q into q = q0q1

such that q0 is the largest factor of q having all of its prime divisors dividing 2 det(A)

so that gcd(q1, 2 det(A)) = 1. To do this, we use the following lemma.

Lemma 4.11. Let q = q0q1 such that gcd(q0, q1) = 1. Let

K(q1)(ℓ, n, r; q0) =
∑

d0∈(Z/q0Z)×
e

(
q∗1(ℓd0 + nd∗0)

q0

)
Gq∗1r

(−q∗1d∗0, q0)

and

K(q0)(ℓ, n, r; q1) =
∑

d1∈(Z/q1Z)×
e

(
q∗0(ℓd1 + nd∗1)

q1

)
Gq∗0r

(−q∗0d∗1, q1),

where d∗0, q
∗
1 ∈ Z/q0Z are such that d0d

∗
0 ≡ q1q

∗
1 ≡ 1 (mod q0) and d

∗
1, q

∗
0 ∈ Z/q1Z are

such that d1d
∗
1 ≡ q0q

∗
0 ≡ 1 (mod q1). Then

K(ℓ, n, r; q) = K(q1)(ℓ, n, r; q0)K
(q0)(ℓ, n, r; q1). (4.22)

Proof. For a given d, we have d0 ∈ Z/q0Z and d1 ∈ Z/q1Z such that d0 ≡ d (mod q0)

and d1 ≡ d (mod q1). By the Chinese remainder theorem, we see that if d coprime to

q, then d ≡ d0q1q
∗
1 + d1q0q

∗
0 (mod q) and d∗ ≡ d∗0q1q

∗
1 + d∗1q0q

∗
0 (mod q). Applying this
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to K(ℓ, n, r; q), we see that

K(ℓ, n, r; q) =
∑

d0∈(Z/q0Z)×

∑
d1∈(Z/q1Z)×

e

(
ℓ(d0q1q

∗
1 + d1q0q

∗
0) + n(d∗0q1q

∗
1 + d∗1q0q

∗
0)

q0q1

)
×Gr(−(d∗0q1q

∗
1 + d∗1q0q

∗
0), q0q1)

=
∑

d0∈(Z/q0Z)×

∑
d1∈(Z/q1Z)×

e

(
ℓd0q

∗
1 + nd∗0q

∗
1

q0

)
e

(
ℓd1q

∗
0 + nd∗1q

∗
0

q1

)
×Gr(−(d∗0q1q

∗
1 + d∗1q0q

∗
0), q0q1). (4.23)

We now take a look at the Gauss sum

Gr(−(d∗0q1q
∗
1 + d∗1q0q

∗
0), q0q1) =

∑
h∈(Z/qZ)s

e

(
1

q0q1
(−(d∗0q1q

∗
1 + d∗1q0q

∗
0)F (h) + h · r)

)
.

(4.24)

For a given h ∈ (Z/qZ)s, we have j ∈ (Z/q0Z)s and k ∈ (Z/q1Z)s such that j ≡

h (mod q0) and k ≡ h (mod q1). By the Chinese remainder theorem, we see that

h ≡ q1q
∗
1j+ q0q

∗
0k (mod q). Therefore, (4.24) becomes

Gr(−(d∗0q1q
∗
1 + d∗1q0q

∗
0), q0q1)

=
∑

j∈(Z/q0Z)s

∑
k∈(Z/q1Z)s

e

(
1

q0q1
(−(d∗0q1q

∗
1 + d∗1q0q

∗
0)F (q1q

∗
1j+ q0q

∗
0k)

)

× e

(
1

q0q1
(q1q

∗
1j+ q0q

∗
0k) · r)

)
.

=
∑

j∈(Z/q0Z)s

∑
k∈(Z/q1Z)s

e

(
1

q0q1
(−(d∗0q1q

∗
1 + d∗1q0q

∗
0)F (q1q

∗
1j+ q0q

∗
0k))

)

× e

(
q∗1
q0
j · r
)
e

(
q∗0
q1
k · r

)
. (4.25)
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We now take a closer look at the quadratic form appearing in the Gauss sum:

F (q1q
∗
1j+ q0q

∗
0k) =

1

2
(q1q

∗
1j+ q0q

∗
0k)

⊤A(q1q
∗
1j+ q0q

∗
0k)

=
1

2
(q1q

∗
1)

2j⊤Aj+ q0q
∗
0q1q

∗
1j

⊤Ak+
1

2
(q0q

∗
0)

2k⊤Ak

= (q1q
∗
1)

2F (j) + q0q
∗
0q1q

∗
1j

⊤Ak+ (q0q
∗
0)

2F (k)

= (q1q
∗
1)

2F (j) + (q0q
∗
0)

2F (k) (mod q0q1) . (4.26)

Substituting this into (4.25), we obtain

Gr(−(d∗0q1q
∗
1 + d∗1q0q

∗
0), q0q1)

=
∑

j∈(Z/q0Z)s

∑
k∈(Z/q1Z)s

e

(
1

q0q1
(−(d∗0q1q

∗
1 + d∗1q0q

∗
0)((q1q

∗
1)

2F (j) + (q0q
∗
0)

2F (k)))

)

× e

(
q∗1
q0
j · r
)
e

(
q∗0
q1
k · r

)
=

∑
j∈(Z/q0Z)s

∑
k∈(Z/q1Z)s

e

(
1

q0
(−d∗0q∗1((q1q∗1)2F (j) + (q0q

∗
0)

2F (k)))

)

× e

(
1

q1
(−d∗1q∗0((q1q∗1)2F (j) + (q0q

∗
0)

2F (k)))

)
e

(
q∗1
q0
j · r
)
e

(
q∗0
q1
k · r

)
=

∑
j∈(Z/q0Z)s

∑
k∈(Z/q1Z)s

e

(
1

q0
(−d∗0q∗1F (j))

)
e

(
1

q1
(−d∗1q∗0F (k))

)
e

(
q∗1
q0
j · r
)
e

(
q∗0
q1
k · r

)

=
∑

j∈(Z/q0Z)s
e

(
1

q0
(−d∗0q∗1F (j) + q∗1j · r)

) ∑
k∈(Z/q1Z)s

e

(
1

q1
(−d∗1q∗0F (k) + q∗0k · r)

)
= Gq∗1r

(−d∗0q∗1, q0)Gq∗0r
(−d∗1q∗0, q1). (4.27)

Substituting this into (4.23), we obtain (4.22).

From now on, unless otherwise specified, let q0 be the largest factor of q having

all of its prime divisors dividing 2 det(A) and q1 = q/q0 so that gcd(q1, 2 det(A)) = 1.

Note that q0 and q1 are coprime.



40

4.4 Estimating some complete sums

Now that we are able to decompose K(ℓ, n, r; q) into other sums, we can provide

better estimates on K(ℓ, n, r; q). We begin by bounding K(q1)(ℓ, n, r; q0).

Lemma 4.12. The sum K(q1)(ℓ, n, r; q0) satisfies the following:

|K(q1)(ℓ, n, r; q0)| ≤ (gcd(L, q0))
s/2q

s/2+1
0 .

Proof. Observe that

|K(q1)(ℓ, n, r; q0)| =

∣∣∣∣∣∣
∑

d0∈(Z/q0Z)×
e

(
q∗1(ℓd0 + nd∗0)

q0

)
Gq∗1r

(−q∗1d∗0, q0)

∣∣∣∣∣∣
≤

∑
d0∈(Z/q0Z)×

∣∣Gq∗1r
(−q∗1d∗0, q0)

∣∣ . (4.28)

By applying Lemma 4.5 to
∣∣Gq∗1r

(−q∗1d∗0, q0)
∣∣ in (4.28), we obtain

|K(q1)(ℓ, n, r; q0)| ≤
∑

d0∈(Z/q0Z)×
(gcd(L, q0))

s/2q
s/2
0

≤ (gcd(L, q0))
s/2q

s/2+1
0 .

Since q1 is coprime to 2 det(A), we can do a better job in evaluating and possibly

bounding K(q0)(ℓ, n, r; q1). We first write K(q0)(ℓ, n, r; q1) in terms of a Kloosterman

sum or a Salié sum. We obtain the following by applying Lemma 4.9 to the definition

of K(q0)(ℓ, n, r; q1).

Lemma 4.13. Let α ∈ Z be such that αA−1 ∈ Ms(Z) and gcd(α, q1) = 1. The sum
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K(q0)(ℓ, n, r; q1) has the following evaluation:

K(q0)(ℓ, n, r; q1) =

(
det(A)

q1

)(
εq1

(
−2q∗0
q1

)
√
q1

)s
κs,q1(q

∗
0(ℓ+ 2∗α∗2αF ∗(r)), q∗0n),

(4.29)

where

κs,q1(a, b) =
∑

d (mod q1)

(
d

q1

)s
e

(
ad+ bd∗

q1

)
(4.30)

is either a Kloosterman sum (if s is even) or a Salié sum (if s is odd).

Proof. We first evaluate Gq∗0r
(−q∗0d∗, q1) when d is coprime to q1. Lemma 4.9 shows

us that

Gq∗0r
(−q∗0d∗, q1) =

(
det(A)

q1

)(
εq1

(
−2q∗0d

∗

q1

)
√
q1

)s
e

(
−(−q∗0d∗)

∗

q1
2∗α∗2αF ∗(q∗0r)

)
=

(
det(A)

q1

)(
εq1

(
−2q∗0
q1

)
√
q1

)s(
d∗

q1

)s
e

(
q0d

q1
2∗α∗2α(q∗0)

2F ∗(r)

)
=

(
det(A)

q1

)(
εq1

(
−2q∗0
q1

)
√
q1

)s(
d

q1

)s
e

(
dq∗02

∗α∗2αF ∗(r)

q1

)
(4.31)

since

(
d∗

q1

)
=

(
d

q1

)
.

Substituting (4.31) into the definition of K(q0)(ℓ, n, r; q1), we obtain

K(q0)(ℓ, n, r; q1)

=

(
det(A)

q1

)(
εq1

(
−2q∗0
q1

)
√
q1

)s
×

∑
d (mod q1)
gcd(d,q1)=1

e

(
q∗0((ℓ+ 2∗α∗2αF ∗(r))d+ nd∗)

q1

)(
d

q1

)s
,

which implies (4.29) since

(
d

q1

)
= 0 if gcd(d, q1) ̸= 1.
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To obtain a bound on K(q0)(ℓ, n, r; q1), we need bounds on Kloosterman sums and

Salié sums. When s is even, we use a corollary (Corollary 11.12 in [IK04]) of Weil’s

bound for Kloosterman sums.

Lemma 4.14 (Corollary 11.12 in [IK04]). If s is even, a and b are integers, and q is

a positive integer, then

|κs,q(a, b)| ≤ τ(q)(gcd(a, b, q))1/2q1/2.

When s is odd, notice that κs,q(a, b) = κ1,q(a, b). To obtain a bound for Salié sums,

we use Lemma 12.4 in [IK04] to evaluate Salié sums under certain circumstances.

Lemma 4.15 (Lemma 12.4 in [IK04]). Suppose that a and b are integers, q is a

positive integer, and gcd(q, 2a) = 1. Then

κ1,q(a, b) = εqq
1/2

(
a

q

) ∑
v (mod q)

v2≡ab (mod q)

e

(
2v

q

)
.

We would like to partially remove the coprimallity condition for the evaluation

of Salié sums. To do this, we notice that κ1,q(a, b) = κ1,q(b, a) since

(
x

q

)
=

(
x∗

q

)
.

Therefore, we only need to consider the case when a, b, and q have a common divisor.

(For our purposes, q will already be odd.)

To do this, we first decompose Salié sums so that we only have to concern ourselves

with the case that q is a prime power, i.e., q = pk for some odd prime p. This decom-

position is made precise with the following lemma about the twisted multiplicatiive

property of Salié sums.

Lemma 4.16. Suppose that a and b are integers and q1 and q2 are positive odd

integers such that gcd(q1, q2) = 1. Then

κ1,q1q2(a, b) = κ1,q1(aq
∗
2, bq

∗
2)κ1,q2(aq

∗
1, bq

∗
1),
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where q2q
∗
2 ≡ 1 (mod q1) and q1q

∗
1 ≡ 1 (mod q2).

Proof. By definition,

κ1,q1q2(a, b) =
∑

d (mod q1q2)

(
d

q1q2

)
e

(
ad+ bd∗

q1q2

)

=
∑

d (mod q1q2)

(
d

q1

)(
d

q2

)
e

(
ad+ bd∗

q1q2

)
. (4.32)

For a given d coprime to q1q2, we have d1 ∈ Z/q1Z and d2 ∈ Z/q2Z such that

d1 ≡ d (mod q1) and d2 ≡ d (mod q2). Let d
∗
1 ∈ Z/q1Z be such that d1d

∗
1 ≡ 1 (mod q1),

and let d∗2 ∈ Z/q2Z be such that d2d
∗
2 ≡ 1 (mod q2). By the Chinese remainder

theorem, we have d ≡ d1q2q
∗
2 +d2q1q

∗
1 (mod q1q2) and d

∗ ≡ d∗1q2q
∗
2 +d

∗
2q1q

∗
1 (mod q1q2).

Applying these facts to (4.32), we see that

κ1,q1q2(a, b)

=
∑

d1 (mod q1)

∑
d2 (mod q2)

(
d1
q1

)(
d2
q2

)
e

(
a(d1q2q

∗
2 + d2q1q

∗
1) + b(d∗1q2q

∗
2 + d∗2q1q

∗
1)

q1q2

)

=
∑

d1 (mod q1)

(
d1
q1

)
e

(
aq∗2d1 + bq∗2d

∗
1

q1

) ∑
d2 (mod q2)

(
d2
q2

)
e

(
aq∗1d2 + bq∗1d

∗
2

q2

)
= κ1,q1(aq

∗
2, bq

∗
2)κ1,q2(aq

∗
1, bq

∗
1).

The previous lemma can be applied repeatedly to κ1,c(a, b) to obtain a product

of Salié sums with each of their denominators being prime powers. This allows us to

only consider the case of q being a prime power. We would like to bound on Salié sums

when q is a prime power. To do this, we need the following bound on an exponential

sum.

Lemma 4.17. Suppose that a is an integer, p is an odd prime, and k is a positive
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integer. Then

∣∣∣∣∣∣∣∣∣∣
∑

v (mod pk)
v2≡a (mod pk)

e

(
2v

pk

)∣∣∣∣∣∣∣∣∣∣
≤ 2. (4.33)

Proof. First suppose that a ≡ 0
(
mod pk

)
. Then the sum in (4.33) is a sum over v of

the form v = p⌈k/2⌉u, where u ∈ Z/p⌊k/2⌋Z. That is,

∑
v (mod pk)

v2≡a (mod pk)

e

(
2v

pk

)
=

∑
u∈Z/p⌊k/2⌋Z

e

(
2p⌈k/2⌉u

pk

)

=
∑

u∈Z/p⌊k/2⌋Z

e

(
2u

p⌊k/2⌋

)

= 1{⌊k/2⌋=0}

by Lemma 4.3 and the fact that p is odd. Therefore, if a ≡ 0
(
mod pk

)
, then (4.33)

holds.

Now suppose that a ̸≡ 0
(
mod pk

)
. Let a0p

a1 ≡ a
(
mod pk

)
, where 0 ≤ a1 ≤ k− 1

and a0 ∈ (Z/pk−a1Z)×. We first explore the possible solutions to

v2 ≡ a
(
mod pk

)
. (4.34)

If there exists a solution v ∈ Z/pkZ to (4.34), then v ̸≡ 0
(
mod pk

)
and there exist

integers v0 and v1 such that 0 ≤ v1 ≤ k − 1, 0 ≤ v0 ≤ pk−v1 − 1, gcd(v0, p
k−v1) = 1,

and v ≡ v0p
v1
(
mod pk

)
. In order for v2 ≡ a

(
mod pk

)
, we must have

v1 =
a1
2

(4.35)
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and

v20 ≡ a0
(
mod pk−a1

)
. (4.36)

Because (Z/pk−a1Z)× is cyclic, there are either zero or two solutions x0 ∈ Z such that

0 ≤ x0 ≤ pk−a1 − 1, gcd(x0, p
k−a1) = 1, and x0 satisfies

x20 ≡ a0
(
mod pk−a1

)
. (4.37)

Each solution x0 lifts to p
a1−v1 = p

a1
2 solutions for v0 ∈ (Z/pk−v1Z)× = (Z/pk−

a1
2 Z)

×
.

Each lift is of the form

v0 ≡ x0 + x1p
k−a1

(
mod pk−

a1
2

)
, (4.38)

where x1 ∈ Z/p
a1
2 Z. One can verify that each v0 of the form in (4.38) contributes to

a unique solution v = v0p
a1
2 to (4.34). Therefore, we have shown that there are either

0 or 2p
a1
2 solutions to (4.34) modulo pk−ℓ.

It is clear that if there are no solutions to (4.34), then

∑
v (mod pk)

v2≡a (mod pk)

e

(
2v

pk

)
= 0.

Thus, we only need to concern ourselves with the case that there are 2p
a1
2 solutions

to (4.34). Let x0 ∈ Z∩ [0, pk−a1 − 1] be coprime to pk−a1 and satisfy (4.37). The only

other integer in [0, pk−a1 −1] that is coprime to pk−a1 and satisfies (4.37) is pk−a1 −x0.

(Note that x0 and pk−a1 − x0 are distinct modulo pk−a1 since p is odd.) Therefore,
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using (4.38), we find that

∑
v (mod pk)

v2≡a (mod pk)

e

(
2v

pk

)

=
∑

x1∈Z/p
a1
2 Z

(
e

(
2(x0 + x1p

k−a1)p
a1
2

pk

)
+ e

(
2(pk−a1 − x0 + x1p

k−a1)p
a1
2

pk

))

=

(
e

(
2x0

pk−
a1
2

)
+ e

(
2(pk−a1 − x0)

pk−
a1
2

)) ∑
x1∈Z/p

a1
2 Z

e

(
2x1

p
a1
2

)
.

By Lemma 4.3 and the fact that p is odd, we obtain

∑
v (mod pk)

v2≡a (mod pk)

e

(
2v

pk

)
=

(
e

(
2x0

pk−
a1
2

)
+ e

(
2(pk−a1 − x0)

pk−
a1
2

))
1{a1=0}. (4.39)

We take absolute values of both sides of (4.39) to obtain (4.33).

Using Lemma 4.17, we obtain the following bound on Salié sums when q is a prime

power.

Lemma 4.18. Suppose that a and b are integers, k is a positive integer, ℓ is a

nonnegative integer, p is an odd prime, and gcd(a, p) = 1. Then

|κ1,pk(apℓ, bpℓ)| ≤ τ(pk)(gcd(apℓ, bpℓ, pk))1/2(pk)1/2. (4.40)

Proof. By definition,

κ1,pk(ap
ℓ, bpℓ) =

∑
d (mod pk)

(
d

pk

)
e

(
apℓd+ bpℓd∗

pk

)
.

Suppose that ℓ ≥ k. Then e
(
apℓd+bpℓd∗

pk

)
is always 1. Thus, since gcd(apℓ, bpℓ, pk) =
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pk, when we apply a trivial bound for the sum, we obtain

|κ1,pk(apℓ, bpℓ)| ≤ pk ≤ τ(pk)(gcd(apℓ, bpℓ, pk))1/2(pk)1/2.

Now suppose that ℓ < k. Then

κ1,pk(ap
ℓ, bpℓ) =

∑
d (mod pk)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)
.

Now

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)
is periodic modulo pk−ℓ, so

κ1,pk(ap
ℓ, bpℓ) = pℓ

∑
d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)
. (4.41)

If k is even, then
∑

d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)
is a Kloosterman sum and we

can apply Lemma 4.14 and see that

|κ1,pk(apℓ, bpℓ)| = pℓτ(pk−ℓ) gcd(a, b, pk−ℓ)1/2(pk−ℓ)1/2 = τ(pk−ℓ)(pℓ)1/2(pk)1/2

≤ τ(pk)(pℓ)1/2(pk)1/2.

Since gcd(apℓ, bpℓ, pk) = pℓ, we obtain (4.40) in the case that ℓ < k and k is even.

Now suppose that k is odd and ℓ is even. Then

∑
d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)
= κ1,pk−ℓ(a, b),
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so we can apply Lemma 4.15 and obtain

κ1,pk(ap
ℓ, bpℓ) = pℓεpk−ℓ(p

k−ℓ)1/2
(

a

pk−ℓ

) ∑
v (mod pk−ℓ)

v2≡ab (mod pk−ℓ)

e

(
2v

pk−ℓ

)
.

We take absolute values of both sides to obtain

|κ1,pk(apℓ, bpℓ)| = (pℓ)1/2(pk)1/2

∣∣∣∣∣∣∣∣∣∣
∑

v (mod pk−ℓ)
v2≡ab (mod pk−ℓ)

e

(
2v

pk−ℓ

)∣∣∣∣∣∣∣∣∣∣
. (4.42)

By applying Lemma 4.17 to (4.42), we find that

|κ1,pk(apℓ, bpℓ)| ≤ 2(pℓ)1/2(pk)1/2. (4.43)

Since gcd(apℓ, bpℓ, pk) = pℓ and τ(pk) ≥ 2, we obtain (4.40) in the case that ℓ < k, k

is odd, and ℓ is even.

Now suppose that k and ℓ are odd. Then

∑
d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)
=

∑
d (mod pk−ℓ)

(
d

p

)
e

(
ad+ bd∗

pk−ℓ

)
(4.44)

and k − ℓ is even.

Let d = d1+d2p
k−ℓ
2 , where 0 ≤ d1 ≤ p

k−ℓ
2 −1 and d2 ∈ Z/p k−ℓ2 Z. If gcd(d1, p) = 1,

then let d∗1 ∈ Z be such that 0 < d∗1 < pk−ℓ and d1d
∗
1 ≡ 1

(
mod pk−ℓ

)
. Observe that

d∗ ≡ d∗1 − (d∗1)
2d2p

k−ℓ
2

(
mod pk−ℓ

)
since

(d1 + d2p
k−ℓ
2 )(d∗1 − (d∗1)

2d2p
k−ℓ
2 ) = d1d

∗
1 − d∗1d2p

k−ℓ
2 + d∗1d2p

k−ℓ
2 − (d∗1)

2d22p
k−ℓ

≡ 1
(
mod pk−ℓ

)
.
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Using this in (4.44), we see that

∑
d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)

=

p
k−ℓ
2 −1∑
d1=0

∑
d2

(
mod p

k−ℓ
2

)
(
d1 + d2p

k−ℓ
2

p

)
e

(
a(d1 + d2p

k−ℓ
2 ) + b(d∗1 − (d∗1)

2d2p
k−ℓ
2 )

pk−ℓ

)

=

p
k−ℓ
2 −1∑
d1=0

(
d1
p

)
e

(
ad1 + bd∗1
pk−ℓ

) ∑
d2

(
mod p

k−ℓ
2

) e
(
(a− b(d∗1)

2)d2

p
k−ℓ
2

)
. (4.45)

Lemma 4.3 implies that

∑
d2

(
mod p

k−ℓ
2

) e
(
(a− b(d∗1)

2)d2

p
k−ℓ
2

)
= p

k−ℓ
2 1{

a≡b(d∗1)2
(
mod p

k−ℓ
2

)}.

Substituting this into (4.45), we obtain

∑
d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)

= p
k−ℓ
2

p
k−ℓ
2 −1∑
d1=0

(
d1
p

)
e

(
ad1 + bd∗1
pk−ℓ

)
1{

a≡b(d∗1)2
(
mod p

k−ℓ
2

)}.

Because

(
d1
p

)
= 0 if gcd(d1, p) ̸= 1, we have

∑
d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)

= p
k−ℓ
2

p
k−ℓ
2 −1∑
d1=0

(
d1
p

)
e

(
ad1 + bd∗1
pk−ℓ

)
1{

gcd(d1,p)=1, a≡b(d∗1)2
(
mod p

k−ℓ
2

)}.
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We take absolute values of both sides to obtain∣∣∣∣∣∣∣
∑

d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)∣∣∣∣∣∣∣
≤ p

k−ℓ
2

∣∣∣{d1 ∈ Z : 0 ≤ d1 ≤ p
k−ℓ
2 − 1, gcd(d1, p) = 1, a ≡ b(d∗1)

2
(
mod p

k−ℓ
2

)}∣∣∣ .
(4.46)

Note that if gcd(d1, p) = 1, then the condition a ≡ b(d∗1)
2
(
mod p

k−ℓ
2

)
is equivalent

to the condition d21 ≡ a∗b
(
mod p

k−ℓ
2

)
. Thus, it suffices to count the number of d1

such that 0 ≤ d1 ≤ p
k−ℓ
2 − 1, gcd(d1, p) = 1, and d21 ≡ a∗b

(
mod p

k−ℓ
2

)
. Now the

number of d0 (mod p) such that gcd(d0, p) = 1 and d20 ≡ a∗b (mod p) is 1 +

(
a∗b

p

)
.

By applying Hensel’s lemma, we see that the number of d1

(
mod p

k−ℓ
2

)
such that

gcd(d1, p) = 1 and d21 ≡ a∗b
(
mod p

k−ℓ
2

)
is also 1 +

(
a∗b

p

)
. (Here is the reason why

Hensel’s lemma is applicable in this instance: If there exists a solution d0 (mod p)

such that gcd(d0, p) = 1 and d20 ≡ a∗b (mod p), then d20 − a∗b ≡ 0 (mod p) and

2d0 ̸≡ 0 (mod p).) Hence, we have

∣∣∣{d1 ∈ Z : 0 ≤ d1 ≤ p
k−ℓ
2 − 1, gcd(d1, p) = 1, a ≡ b(d∗1)

2
(
mod p

k−ℓ
2

)}∣∣∣
= 1 +

(
a∗b

p

)
.

Applying this to (4.46), we find that

∣∣∣∣∣∣∣
∑

d (mod pk−ℓ)

(
d

p

)k
e

(
ad+ bd∗

pk−ℓ

)∣∣∣∣∣∣∣ ≤ p
k−ℓ
2

(
1 +

(
a∗b

p

))
≤ 2p

k−ℓ
2 .

We apply this to (4.41) to see that

|κ1,pk(apℓ, bpℓ)| ≤ 2pℓp
k−ℓ
2 = 2(pℓ)1/2(pk)1/2 ≤ τ(pk)(pℓ)1/2(pk)1/2.



51

Since gcd(apℓ, bpℓ, pk) = pℓ, we obtain (4.40) in the case that ℓ < k and k and ℓ are

both odd.

Because the expression τ(q)(gcd(a, b, q))1/2q1/2 is multiplicative as a function of q,

we can repeatedly apply Lemmas 4.16 and 4.18 to obtain the following result.

Lemma 4.19. If s is odd, a and b are integers, and q is a positive odd integer, then

|κs,q(a, b)| ≤ τ(q)(gcd(a, b, q))1/2q1/2. (4.47)

Proof. First of all, notice that κs,q(a, b) = κ1,q(a, b) when s is odd.

If q = 1, then both sides of the inequality in (4.47) are equal to 1.

If q is a prime power, then Lemma 4.18 gives the result of this lemma.

Now suppose that q > 1 is not a prime power. Then q = pkt, where p is an odd

prime, k is a positive integer, t is a positive odd integer, and gcd(pk, t) = 1.

We will use the principle of mathematical induction to complete this proof. As-

sume that for each positive odd integer v < q that

|κs,v(c, d)| ≤ τ(v)(gcd(c, d, v))1/2v1/2 (4.48)

holds for any integers c and d.

Lemma 4.16 implies that

|κs,q(a, b)| = |κs,pk(at∗, bt∗)||κs,t(a(pk)
∗
, b(pk)

∗
)|, (4.49)

where tt∗ ≡ 1
(
mod pk

)
and pk(pk)

∗ ≡ 1 (mod t). By applying Lemma 4.18 to

|κs,pk(at∗, bt∗)| in (4.49), we find that

|κs,q(a, b)| ≤ τ(pk)(gcd(at∗, bt∗, pk))1/2(pk)1/2|κs,t(a(pk)
∗
, b(pk)

∗
)|. (4.50)
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Note that t < q is a positive odd integer, so we apply the inductive hypothesis

(4.48) with v = t, c = at∗, and d = bt∗ to (4.50) to obtain

|κs,q(a, b)| ≤ τ(pk)(gcd(at∗, bt∗, pk))1/2(pk)1/2τ(t)(gcd(a(pk)
∗
, b(pk)

∗
, t))1/2t1/2

= τ(pk)τ(t)(gcd(at∗, bt∗, pk))1/2(gcd(a(pk)
∗
, b(pk)

∗
, t))1/2q1/2

Because gcd(pk, t) = 1 and τ is multiplicative, we conclude that

|κs,q(a, b)| ≤ τ(q)(gcd(a, b, pk))1/2(gcd(a, b, t))1/2q1/2

= τ(q)(gcd(a, b, q))1/2q1/2.

Combining the previous lemma with Lemma 4.14, we have the following bound

on κs,q(a, b) when q is odd.

Lemma 4.20. If a, b, and s are integers and q is a positive odd integer, then

|κs,q(a, b)| ≤ τ(q)(gcd(a, b, q))1/2q1/2. (4.51)

By applying Lemmas 4.13 and 4.20 to K(q0)(ℓ, n, r; q1), we obtain the following

result.

Lemma 4.21. Let α ∈ Z be such that αA−1 ∈ Ms(Z) and gcd(α, q1) = 1. The sum

K(q0)(ℓ, n, r; q1) satisfies the following:

|K(q0)(ℓ, n, r; q1)| ≤ q
(s+1)/2
1 τ(q1)(gcd(ℓ+ 2∗α∗2αF ∗(r), n, q1))

1/2.

Proof. By applying Lemmas 4.13 and 4.20 to K(q0)(ℓ, n, r; q1), we see that

|K(q0)(ℓ, n, r; q1)| ≤ q
(s+1)/2
1 τ(q1)(gcd(q

∗
0(ℓ+ 2∗α∗2αF ∗(r)), q∗0n, q1))

1/2.
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Because gcd(q∗0, q1) = 1, we obtain the result of the lemma.

4.5 Bounding the arithmetic part

We have now provided bounds for γ(ℓ), and K(q1)(ℓ, n, r; q0), and K
(q0)(ℓ, n, r; q1).

Therefore, we have what we need to compute an upper bound for the absolute value

of Tr(q, n;x). Such an upper bound appears in the following lemma.

Lemma 4.22. For r ∈ Zs, n ∈ Z, x ∈ R, and positive q ∈ Z, the sum Tr(q, n;x) is

Tr(q, n;x) ≪ (gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(s+1)/2τ(q) log(2q). (4.52)

The implied constant does not depend on F .

Proof. We use Lemmas 4.1 and 4.11 to obtain

Tr(q, n;x) =
∑

ℓ (mod q)

γ(ℓ)K(q1)(ℓ, n, r; q0)K
(q0)(ℓ, n, r; q1). (4.53)
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We now apply Lemmas 4.4, 4.12, and 4.21 to see that

|Tr(q, n;x)| ≤
∑

− q
2
<ℓ≤ q

2

(1 + |ℓ|)−1(gcd(L, q0))
s/2q

s/2+1
0 q

(s+1)/2
1

× τ(q1)(gcd(ℓ+ 2∗α∗2αF ∗(r), n, q1))
1/2

= q(s+1)/2q
1/2
0 τ(q1)(gcd(L, q0))

s/2

×
∑

− q
2
<ℓ≤ q

2

(1 + |ℓ|)−1(gcd(ℓ+ 2∗α∗2αF ∗(r), n, q1))
1/2

≤ q(s+1)/2q
1/2
0 τ(q)(gcd(L, q0))

s/2
∑

− q
2
<ℓ≤ q

2

(1 + |ℓ|)−1(gcd(n, q1))
1/2

≤ q(s+1)/2q
1/2
0 τ(q)(gcd(L, q0))

s/2(gcd(n, q1))
1/2

1 + 2

⌊ q2⌋∑
ℓ=1

(1 + ℓ)−1

 .

(4.54)

We use Euler’s summation formula [Apo76, Theorem 3.1] to bound the sum in

(4.54):

⌊ q2⌋∑
ℓ=1

(1 + ℓ)−1 =
1

2
+

∫ ⌊ q2⌋

1

(1 + ℓ)−1 dℓ−
∫ ⌊ q2⌋

1

(ℓ− ⌊ℓ⌋)(1 + ℓ)−2 dℓ

=
1

2
+ log

(
1 +

⌊q
2

⌋)
− log(2)−

∫ ⌊ q2⌋

1

(ℓ− ⌊ℓ⌋)(1 + ℓ)−2 dℓ. (4.55)

Because 0 ≤ ℓ− ⌊ℓ⌋ ≤ 1, the integral in (4.55) is bounded (in absolute value) by

∣∣∣∣∣
∫ ⌊ q2⌋

1

(1 + ℓ)−2 dℓ

∣∣∣∣∣ =
∣∣∣∣12 −

(
1 +

⌊q
2

⌋)−1
∣∣∣∣ ≤ 1

2
.

Therefore,

⌊ q2⌋∑
ℓ=1

(1 + ℓ)−1 = log
(
1 +

⌊q
2

⌋)
+O(1) = log

(
1 +

q

2

)
+O(1) (4.56)
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since
∣∣log (1 + q

2

)
− log

(
1 +

⌊
q
2

⌋)∣∣ ≤ 1
1+⌊q/2⌋ ≤ 1.

Substituting (4.56) into (4.54), we see that

|Tr(q, n;x)| ≤ q(s+1)/2q
1/2
0 τ(q)(gcd(L, q0))

s/2(gcd(n, q1))
1/2

×
(
1 + 2

(
log
(
1 +

q

2

)
+O(1)

))
= q(s+1)/2q

1/2
0 τ(q)(gcd(L, q0))

s/2(gcd(n, q1))
1/2
(
2 log

(
1 +

q

2

)
+O(1)

)
.

We obtain the result of this lemma by noticing that

2 log
(
1 +

q

2

)
+O(1) ≪ log(2q)

for q ≥ 1.
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Chapter 5

Analyzing the archimedean part

In this chapter, we analyze the archimedean part IF,ψ(x,X, r, q) using a prin-

ciple of nonstationary phase and other bounds on certain oscillatory integrals. An

oscillatory integral is an integral of the form

∫
Rs

e(f(m))ψ(m) dm, (5.1)

where f ∈ C∞(Rs) and ψ ∈ C∞
c (Rs).

Typically, a principle of nonstationary phase says that the oscillatory integral

in (5.1) is relatively small in absolute value if the gradient of f is nonzero for all

m ∈ supp(ψ). In Section 5.1, we describe a one-dimensional version of the principle

of nonstationary phase.

In Section 5.2, we look at oscillatory integrals in which the function f in (5.1) is a

quadratic polynomial. In that section, we give an upper bound for the absolute value

of such an oscillatory integral.

In Section 5.3, we use the results of Sections 5.1 and 5.2 to obtain bounds for the

archimedean part IF,ψ(x,X, r, q).
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5.1 A principle of nonstationary phase

To analyze the archimedean part IF,ψ(x,X, r, q), we will use a one-dimensional

principle of nonstationary phase. We will use a principle of nonstationary phase that is

different than what is found in Proposition 1 in Chapter 8 of [Ste93], Proposition 6.1

of [Wol03], Lemma 2.6 in [Tao], and Proposition B.1 in [Gre13]. (The results in

[Ste93], [Wol03], [Tao], and [Gre13] are not directly applicable for our purposes.)

The next theorem is our one-dimensional version of the principle of nonstationary

phase and is a slight generalization of the statement “Non-stationary phase” on p. 94

in [Zha18].

Theorem 5.1 (Principle of nonstationary phase in one variable). Let ψ ∈ C∞
c (R)

and let M ≥ 0. Let f ∈ C∞(R) be such that |f ′(x)| ≥ B > 0 and |f (j)(x)| ≤ |f ′(x)|

for all x ∈ supp(ψ) and for each integer j satisfying 2 ≤ j ≤ ⌈M⌉. Then

∫
R
e(f(x))ψ(x) dx≪ψ,M B−M .

Proof. Because of the monotonicity of B−M as a function of M , it suffices to only

consider when M is an integer. (If B ≥ 1, then B−M ≤ B−⌊M⌋ and we can use the

implied constant for ⌊M⌋. If B ≤ 1, then B−M ≤ B−⌈M⌉ and we can use the implied

constant for ⌈M⌉.) The theorem will be proven by using mathematical induction and

integration by parts.

Let ψ0 = ψ. For a positive integer j and a real number x, we define the function

ψj recursively by

ψj(x) =


(
ψj−1

f ′

)′

(x) if f ′(x) ̸= 0,

0 otherwise.

Induction proofs (which we omit) show that ψj is differentiable and that supp(ψj) ⊆
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supp(ψ) for each nonnegative integer j. We first prove the following about the oscil-

latory integral that appears in Theorem 5.1.

Lemma 5.2. For each nonnegative integer j,

∫
R
e(f(x))ψ(x) dx = (−2πi)−j

∫
supp(ψ)

e(f(x))ψj(x) dx. (5.2)

Proof of Lemma 5.2. Using definitions, we observe that

∫
R
e(f(x))ψ(x) dx = (−2πi)−0

∫
supp(ψ)

e(f(x))ψ0(x) dx.

Thus, (5.2) holds for j = 0.

For the induction hypothesis, let k ≥ 0 and assume that (5.2) holds for j = k.

Observe that

e(f(x)) =
1

2πif ′(x)

d

dx
(e(f(x))) (5.3)

when x ∈ supp(ψ). The induction hypothesis and (5.3) imply that

∫
R
e(f(x))ψ(x) dx = (−2πi)−k

∫
supp(ψ)

e(f(x))ψk(x) dx

= (−1)k(2πi)−(k+1)

∫
supp(ψ)

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx. (5.4)

Because |f ′(x)| ≥ B > 0 whenever x ∈ supp(ψ), the set U = {x ∈ R : |f ′(x)| >

B/2} is an open set such that supp(ψ) ⊆ U . Because any fixed open set of R can be

written as a countable union of disjoint open intervals, we have

U =
∞⊔
ℓ=1

(cℓ, dℓ),

where cℓ ≤ dℓ ≤ cℓ+1 for each ℓ ≥ 1. (Note that (a, a) = ∅ for any a ∈ R. We consider
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the empty set to be an open interval.)

Because supp(ψk) ⊆ supp(ψ) ⊆ U and f ′(x) ̸= 0 for all x ∈ U , we have

∫
supp(ψ)

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx =

∫
U

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx

=
∞∑
ℓ=1

∫ dℓ

cℓ

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx.

Using integration by parts, we see that

∫
supp(ψ)

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx =

∞∑
ℓ=1

(
e(f(dℓ))

ψk(dℓ)

f ′(dℓ)
− e(f(cℓ))

ψk(cℓ)

f ′(cℓ)

−
∫ dℓ

cℓ

e(f(x))

(
ψk
f ′

)′

(x) dx

)
.

Observe that ψk(cℓ) = ψk(dℓ) = 0 for each ℓ ≥ 1 since supp(ψk) is a subset of U .

For each ℓ ≥ 1, we also notice that f ′(cℓ) ̸= 0 and f ′(dℓ) ̸= 0, because f ′ is continuous

and |f ′(x)| ≥ B/2 for x ∈ (cℓ, dℓ). Therefore,

∫
supp(ψ)

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx = −

∞∑
ℓ=1

∫ dℓ

cℓ

e(f(x))ψk+1(x) dxt

Since supp(ψk+1) ⊆ supp(ψ) ⊆ U =
⊔∞
ℓ=1(cℓ, dℓ), we deduce that

∫
supp(ψ)

d

dx
(e(f(x)))

ψk(x)

f ′(x)
dx = −

∫
supp(ψ)

e(f(x))ψk+1(x) dx. (5.5)

By substituting (5.5) into (5.4), we observe that (5.2) holds for j = k + 1. By the

principle of mathematical induction, (5.2) holds for each nonnegative integer j.
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Using the previous lemma, we observe that for each nonnegative integer j that

∣∣∣∣∫
R
e(f(x))ψ(x) dx

∣∣∣∣ = ∣∣∣∣(−2πi)−j
∫
supp(ψ)

e(f(x))ψj(x) dx

∣∣∣∣
≤ (2π)−j

∫
supp(ψ)

|e(f(x))ψj(x)| dx

= (2π)−j
∫
supp(ψ)

|ψj(x)| dx.

Therefore, to prove Theorem 5.1, it suffices to prove that

∫
supp(ψ)

|ψj(x)| dx≪ψ,j B
−j (5.6)

for each nonnegative integer j.

To do this, we would like to write ψj as ψj = Pj/(f
′)2

j+1−2, where Pj is a poly-

nomial of functions in the set {ψ(k) : 0 ≤ k ≤ j} ∪ {f (k+1) : 0 ≤ k ≤ j}. The next

lemma allows us to write ψj in this way and states some useful properties of Pj.

Lemma 5.3. For a nonnegative integer j, the function ψj can be written as

ψj =
Pj

(f ′)2j+1−2
, (5.7)

where Pj is a polynomial of functions in the set {ψ(k) : 0 ≤ k ≤ j} ∪ {f (k+1) : 0 ≤

k ≤ j}.

The polynomial Pj is a homogeneous polynomial in f (1), . . . , f (j+1). Define nj,f to

be the degree of Pj when viewed as a polynomial in f (1), . . . , f (j+1). Then

nj,f = 2j+1 − j − 2. (5.8)

Proof of Lemma 5.3. We prove this lemma using the principle of mathematical in-

duction.
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By definition, we have P0 = ψ, which is a polynomial in ψ(0) and f (1). Notice that

P0 is a homogeneous polynomial in f (1), and n0,f = 0. Observe that 20+1− 0− 2 = 0,

so (5.8) holds for j = 0.

Let ℓ be a nonnegative integer. Suppose that ψℓ can be written as

ψℓ =
Pℓ

(f ′)2ℓ+1−2
, (5.9)

where Pℓ is a polynomial of functions in the set {ψ(k) : 0 ≤ k ≤ ℓ} ∪ {f (k+1) :

0 ≤ k ≤ ℓ}. Also, suppose that the polynomial Pℓ is a homogeneous polynomial in

f (1), . . . , f (ℓ+1) and that (5.8) holds for j = ℓ.

We look at ψℓ+1 and see that

ψℓ+1 =

(
ψk
f ′

)′

=

(
Pℓ

(f ′)2ℓ+1−1

)′

=
(f ′)2

ℓ+1−1P ′
ℓ − (2ℓ+1 − 1)(f ′)2

ℓ+1−2f ′′Pℓ
(f ′)2ℓ+2−2

(5.10)

by the quotient rule. Therefore,

Pℓ+1 = (f ′)2
ℓ+1−1P ′

ℓ − (2ℓ+1 − 1)(f ′)2
ℓ+1−2f ′′Pℓ. (5.11)

The induction hypothesis says that Pℓ is a polynomial of functions in the set

{ψ(k) : 0 ≤ k ≤ ℓ} ∪ {f (k+1) : 0 ≤ k ≤ ℓ}. Because of how the product rule

and the chain rule work, we observe that P ′
ℓ is a polynomial of functions in the set

{ψ(k) : 0 ≤ k ≤ ℓ + 1} ∪ {f (k+1) : 0 ≤ k ≤ ℓ + 1}. Since ℓ + 1 ≥ 1, the functions

f ′ and f ′′ are in the set {ψ(k) : 0 ≤ k ≤ ℓ + 1} ∪ {f (k+1) : 0 ≤ k ≤ ℓ + 1}.

Therefore, using (5.11), we conclude that Pℓ+1 is a polynomial of functions in the set

{ψ(k) : 0 ≤ k ≤ ℓ+ 1} ∪ {f (k+1) : 0 ≤ k ≤ ℓ+ 1}.
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The induction hypothesis also states that Pℓ is a homogeneous polynomial in

f (1), . . . , f (ℓ+1) and that (5.8) holds for j = ℓ. Again, because of how the prod-

uct rule and the chain rule work, we find that P ′
ℓ is a homogeneous polynomial in

f (1), . . . , f (ℓ+2) and the degree of P ′
ℓ when viewed as a polynomial in f (1), . . . , f (ℓ+2)

is equal to nℓ,f . Therefore, the polynomial (f ′)2
ℓ+1−1P ′

ℓ is a homogeneous polynomial

in f (1), . . . , f (ℓ+2). Also, (f ′)2
ℓ+1−1P ′

ℓ has degree nℓ,f + 2ℓ+1 − 1 when viewed as a

polynomial in f (1), . . . , f (ℓ+2). Furthermore, the polynomial (2ℓ+1 − 1)(f ′)2
ℓ+1−2f ′′Pℓ

is a homogeneous polynomial in f (1), . . . , f (ℓ+2) since Pℓ is a homogeneous polynomial

in f (1), . . . , f (ℓ+1). The degree of (2ℓ+1 − 1)(f ′)2
ℓ+1−2f ′′Pℓ is

2ℓ+1 − 2 + 1 + nℓ,f = nℓ,f + 2ℓ+1 − 1

when viewed as a polynomial in f (1), . . . , f (ℓ+2).

Therefore, using (5.11), we conclude that Pℓ+1 is a homogeneous polynomial in

f (1), . . . , f (ℓ+2). Using the induction hypothesis, we also observe that Pℓ+1 has degree

nℓ,f + 2ℓ+1 − 1 = 2ℓ+1 − ℓ− 2 + 2ℓ+1 − 1

= 2ℓ+2 − (ℓ+ 1)− 2.

Thus, (5.8) holds for j = ℓ+ 1.

Because of the previous lemma and the fact that |f (k)(x)| ≤ |f ′(x)| for all x ∈

supp(ψ) and for all k ∈ Z such that 2 ≤ k ≤ j, we have for x ∈ supp(ψ) that

|ψj(x)| ≤
|P̃j(x)|
|f ′(x)|j

,

where P̃j is a polynomial of the functions in the set {|ψ(k)| : 0 ≤ k ≤ j}. Since
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|f ′(x)| ≥ B > 0, we have

|ψj(x)| ≤ B−j|P̃j(x)|.

Therefore,

∫
supp(ψ)

|ψj(x)| dx ≤ B−j
∫
supp(ψ)

|P̃j(x)| dx.

Thus, we have (5.6) for each nonnegative integer j.

5.2 Bounding an oscillatory integral

In this section, we give an upper bound for the absolute value of an oscillatory

integral associated with a quadratic polynomial. The following theorem generalizes

the statement “Stationary phase” on p. 95 of [Zha18] to quadratic polynomials in any

positive number of variables.

Theorem 5.4. Suppose that A is the Hessian matrix of a nonsingular quadratic form

in s variables. Suppose that b ∈ Rs, c ∈ R, and ψ ∈ C∞
c (Rs). Then

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx ≪ψ | det(A)|−1/2. (5.12)

Remark 5.5. With the hypotheses of Theorem 5.4, one can prove that

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e

(
c− 1

2
b⊤A−1b

)
ψ(−A−1b)eiπ sgnt(A)/4| det(A)|−1/2

+Oψ(| det(A)|−1/2|λmin|−1), (5.13)

where λmin is the eigenvalue of A that has the minimum absolute value. Because
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this is an asymptotic for an oscillatory integral that depends on when the gradient of

1
2
x⊤Ax + b · x + c is zero, this result could be called a principle of stationary phase

for quadratic polynomials. However, we will not need this result for our purposes.

Before we prove Theorem 5.4, we prove a number of lemmas that will be used

in our proof of Theorem 5.4. Our first lemma gives the Fourier transform of the

one-dimensional Gaussian function e−ax
2
with a > 0.

Lemma 5.6. For a > 0 and y ∈ C, we have

∫
R
e−ax

2

e(−xy) dx =

√
π

a
e−π

2y2/a. (5.14)

Proof. It is well-known that

∫
R
e−πx

2

e(−xy) dx = e−πy
2

. (5.15)

(For example, see Example 1 and Exercise 4 of Chapter 2 of [SS03].) Now

∫
R
e−ax

2

e(−xy) dx =

∫
R
e−π(

√
a
π
x)

2

e

(
−
(√

a

π
x

)(√
π

a
y

))
dx.

Let u =
√

a
π
x. Then

∫
R
e−ax

2

e(−xy) dx =

√
π

a

∫
R
e−πu

2

e

(
−u
√
π

a
y

)
du.

We use (5.15) to see that

∫
R
e−ax

2

e(−xy) dx =

√
π

a
e−π(

√
π
a
y)

2

=

√
π

a
e−π

2y2/a.

Fourier transform of the one-dimensional Gaussian function allows us to prove

the following lemma about the Fourier transform of a multi-dimensional Gaussian

function.
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Lemma 5.7. Suppose that a = (a1, . . . , as)
⊤ ∈ Rs be such that aj > 0 for each

1 ≤ j ≤ s. Then

∫
Rs
e−

∑s
j=1 ajx

2
j e(−x · y) dx = e−

∑s
j=1 π

2y2j /aj

s∏
j=1

π1/2

a
1/2
j

(5.16)

for y ∈ Cs.

Proof. Using the Fubini-Tonelli theorem, we obtain

∫
Rs
e−

∑s
j=1 ajx

2
j e(−x · y) dx =

s∏
j=1

∫
R
e−ajx

2
j e(−xjyj) dxj.

By Lemma 5.6, the integral becomes

∫
Rs
e−

∑s
j=1 zjx

2
j e(−x · y) dx =

s∏
j=1

√
π

aj
e−π

2y2j /aj ,

which is equal to (5.16).

We can now apply Plancherel’s theorem to obtain the following result.

Lemma 5.8. Suppose that D be an s×s diagonal matrix with real entries and rank s.

Suppose that ψ ∈ C∞
c (Rs). Then

∫
Rs

e

(
1

2
x⊤Dx

)
ψ(x) dx = eiπ sgnt(D)/4| det(D)|−1/2

∫
Rs

e

(
−1

2
x⊤D−1x

)
ψ̂(x) dx.

Proof of Lemma 5.8. Plancherel’s theorem states that

∫
Rs
f(x)g(x) dx =

∫
Rs
f̂(y)ĝ(y) dy

if f, g ∈ L1(Rs) ∩ L2(Rs). Let z = (z1, . . . , zs)
⊤ ∈ Rs be such that zj > 0 for each
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1 ≤ j ≤ s. Plancherel’s theorem with f(x) = ψ(x) and g(x) = e−
∑s
j=1 zjx

2
j gives us

∫
Rs
e−

∑s
j=1 zjx

2
jψ(x) dx =

∫
Rs
e−

∑s
j=1 π

2x2j/zj ψ̂(x) dx
s∏
j=1

π1/2

z
1/2
j

. (5.17)

(We used Lemma 5.7 to compute the Fourier transform of e−
∑s
j=1 zjx

2
j .)

The left-hand side of (5.17) can be extended to a analytic function for all z ∈ Cs.

(For each x ∈ Rs, we have e−
∑s
j=1 zjx

2
jψ(x) is analytic in z. For each z ∈ Cs, the

left-hand side of (5.17) is the integral of a continuous function over a compact set.

We can then apply a theorem similar to Theorem 5.4 in Chapter 2 of [SS03].)

Using the Lebesgue dominated convergence theorem, the right-hand side can be

extended to a continuous function on

S = {z ∈ Cs : z ̸= 0,Re(zj) ≥ 0 for all 1 ≤ j ≤ s}

that is analytic on the interior of S. (For all z ∈ S and x ∈ Rs, the inequality∣∣∣e−∑s
j=1 π

2x2j/zj ψ̂(x)
∣∣∣ ≤ |ψ̂(x)| holds.)

It follows from the identity principle that (5.17) holds for all z ∈ S. (For the

square root function, we use the principal branch cut of the logarithm function along

the nonpositive real axis.) In particular, (5.17) holds when each zj = −iπdj, where

D = diag(d1, . . . , ds). Therefore,

∫
Rs

e

(
1

2
x⊤Dx

)
ψ(x) dx =

∫
Rs
e−

∑s
j=1 π

2x2j/(−iπdj)ψ̂(x) dx
s∏
j=1

π1/2

(−iπdj)1/2

=

∫
Rs
e−iπ

∑s
j=1 x

2
j/dj ψ̂(x) dx

s∏
j=1

(−idj)−1/2

= eiπ sgnt(D)/4| det(D)|−1/2

∫
Rs

e

(
−1

2
x⊤D−1x

)
ψ̂(x) dx.

We are now in a position to give a proof for Theorem 5.4.
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Proof of Theorem 5.4. Using the spectral theorem for symmetric matrices, we can

write the symmetric matrix A as

A = P⊤DP,

where P is an orthogonal matrix and D is a diagonal matrix. Therefore, P⊤ = P−1,

and

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

=

∫
Rs

e

(
1

2
x⊤P⊤DPx+ b⊤P⊤Px+ c

)
ψ(P−1Px) dx

= e(c)

∫
Rs

e

(
1

2
(Px)⊤DPx+ (Pb)⊤Px

)
ψ(P−1Px) dx.

Let y = Px. Because P is orthogonal, we know that | det(P )| = 1. Thus,

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e(c)

∫
Rs

e

(
1

2
y⊤Dy + (Pb)⊤y

)
ψ(P−1y)

1

| det(P )|
dy

= e(c)

∫
Rs

e

(
1

2
y⊤Dy + (Pb)⊤y

)
ψ(P−1y) dy.

We now complete the square and see that

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e(c)

∫
Rs

e

(
1

2
(y +D−1Pb)⊤D(y +D−1Pb)− 1

2
(Pb)⊤D−1Pb

)
ψ(P−1y) dy

= e

(
c− 1

2
b⊤P⊤D−1Pb

)∫
Rs

e

(
1

2
(y +D−1Pb)⊤D(y +D−1Pb)

)
ψ(P−1y) dy.
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Let z = y +D−1Pb. Then

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e

(
c− 1

2
b⊤P⊤D−1Pb

)∫
Rs

e

(
1

2
z⊤Dz

)
ψ(P−1z− P−1D−1Pb) dz. (5.18)

Now

A−1 = (P⊤DP )−1 = P−1D−1(P⊤)−1 = P−1D−1(P−1)−1

= P−1D−1P = P⊤D−1P (5.19)

since P−1 = P⊤. We apply (5.19) to (5.18) and obtain

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e

(
c− 1

2
b⊤A−1b

)∫
Rs

e

(
1

2
z⊤Dz

)
ψ(P−1z− A−1b) dz

= e

(
c− 1

2
b⊤A−1b

)∫
Rs

e

(
1

2
z⊤Dz

)
φ(z) dz, (5.20)

where φ(z) = ψ(P−1z− A−1b) for z ∈ Rs.

We apply Lemma 5.8 to (5.20) to obtain

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e

(
c− 1

2
b⊤A−1b

)
eiπ sgnt(D)/4| det(D)|−1/2

∫
Rs

e

(
−1

2
z⊤D−1z

)
φ̂(z) dz. (5.21)

Before we bound (5.21), we compute φ̂ in terms of A and b.

Lemma 5.9. Suppose that φ(z) = ψ(P−1z − A−1b), where A, P , b, and ψ are as

above. Then

φ̂(w) = e
(
−(PA−1b)⊤w

)
ψ̂(P⊤w) (5.22)
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for w ∈ Rs.

Proof of Lemma 5.9. By definition, the Fourier transform of φ is

φ̂(w) =

∫
Rs
ψ(P−1z− A−1b)e(−z ·w) dz.

Let v = P−1z− A−1b. Then z = Pv + PA−1b, and

φ̂(w) =

∫
Rs
ψ(v)e

(
−(Pv + PA−1b)⊤w

)
| det(P )| dv

= e
(
−(PA−1b)⊤w

) ∫
Rs
ψ(v)e

(
−v⊤P⊤w

)
dv

since P is orthogonal and | det(P )| = 1. We obtain (5.22) by noting that

∫
Rs
ψ(v)e

(
−v⊤P⊤w

)
dv = ψ̂(P⊤w).

We are now able to estimate
∫
Rs e
(
1
2
x⊤Ax+ b · x+ c

)
ψ(x) dx. Using Lemma 5.9

in (5.21), we obtain

∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

= e

(
c− 1

2
b⊤A−1b

)
eiπ sgnt(D)/4| det(D)|−1/2

×
∫
Rs

e

(
−1

2
z⊤D−1z

)
e
(
−(PA−1b)⊤z

)
ψ̂(P⊤z) dz.
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We take absolute values of both sides and see that

∣∣∣∣∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

∣∣∣∣
= | det(D)|−1/2

∣∣∣∣∫
Rs

e

(
−1

2
z⊤D−1z

)
e
(
−(PA−1b)⊤z

)
ψ̂(P⊤z) dz

∣∣∣∣
≤ | det(D)|−1/2

∫
Rs

∣∣∣∣e(−1

2
z⊤D−1z

)
e
(
−(PA−1b)⊤z

)
ψ̂(P⊤z)

∣∣∣∣ dz
= | det(D)|−1/2

∫
Rs

∣∣∣ψ̂(P⊤z)
∣∣∣ dz. (5.23)

Let w = P⊤z. Then z = Pw (because P−1 = P⊤), and

∫
Rs

∣∣∣ψ̂(P⊤z)
∣∣∣ dz =

∫
Rs

∣∣∣ψ̂(w)
∣∣∣ | det(P )| dw

=

∫
Rs

∣∣∣ψ̂(w)
∣∣∣ dw (5.24)

since | det(P )| = 1. Substituting (5.24) into (5.23), we obtain

∣∣∣∣∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

∣∣∣∣ ≤ | det(D)|−1/2

∫
Rs

∣∣∣ψ̂(w)
∣∣∣ dw.

Because A = P⊤DP and | det(P )| = 1, we know that det(A) = det(D). Therefore,

∣∣∣∣∫
Rs

e

(
1

2
x⊤Ax+ b · x+ c

)
ψ(x) dx

∣∣∣∣ ≤ | det(A)|−1/2

∫
Rs

∣∣∣ψ̂(w)
∣∣∣ dw,

which shows that (5.12) is true with an implied constant of
∫
Rs

∣∣∣ψ̂(w)∣∣∣ dw.
5.3 Applying bounds for oscillatory integrals

In this section, we apply the results of Sections 5.1 and 5.2 to the archimedean

part IF,ψ(x,X, r, q). To make the results of Sections 5.1 and 5.2 applicable to the

archimedean part, we normalize our bump function so that it remains same regardless
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the value of X. We do this by applying a change a variables (m 7→ Xm) in (3.20)

obtain the following:

IF,ψ(x,X, r, q) = Xs

∫
Rs

e

(
xF (Xm)− 1

q
Xm · r

)
ψX(Xm) dm

= Xs

∫
Rs

e

(
xF (Xm)− 1

q
Xm · r

)
ψ1

(
X

X
m

)
dm

= Xs

∫
Rs

e

(
X2xF (m)− 1

q
Xm · r

)
ψ(m) dm. (5.25)

The following lemma gives a trivial bound for IF,ψ(x,X, r, q).

Lemma 5.10. Suppose that x ∈ R, X > 0, r ∈ Zs, and q is a positive integer. Then

IF,ψ(x,X, r, q) ≪ψ X
s. (5.26)

Proof. By (5.25), we know that

|IF,ψ(x,X, r, q)| ≤ Xs

∫
Rs

|ψ(m)| dm ≪ψ X
s.

We will need less trivial bounds for IF,ψ(x,X, r, q). We can apply Theorem 5.4 to

the integral in (5.25) to obtain the following bound on IF,ψ(x,X, r, q).

Theorem 5.11. Suppose that x ∈ R, X > 0, r ∈ Zs, and q is a positive integer.

Then

IF,ψ(x,X, r, q) ≪ψ min
{
Xs, |x|−s/2(det(A))−1/2

}
. (5.27)

Proof. By Theorem 5.4, the integral in (5.25) is

∫
Rs

e

(
X2xF (m)− 1

q
Xm · r

)
ψ(m) dm ≪ψ | det(X2xA)|−1/2

= |X2sxs det(A)|−1/2. (5.28)
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We notice that X > 0 and det(A) > 0, so (5.28) implies that

∫
Rs

e

(
X2xF (m)− 1

q
Xm · r

)
ψ(m) dm ≪ψ X

−s|x|−s/2(det(A))−1/2.

We multiply by Xs to obtain

IF,ψ(x,X, r, q) ≪ψ |x|−s/2(det(A))−1/2. (5.29)

The statement (5.27) is obtained by taking the minimum of (5.26) and (5.29).

To obtain better estimates on sums and integrals involving IF,ψ(x,X, r, q), we

need to determine when we can apply Theorem 5.1. To do this, we use partial

derivatives and directional derivatives. We use the notation ∂f
∂xj

(m) to denote the the

partial derivative in the jth coordinate evaluated at the point m. We now define a

directional derivative.

Definition 5.12 (Directional derivative). For a unit vector u ∈ Rs and a differen-

tiable function f : Rs → R, define the directional derivative ∇uf of f along u to

be

∇uf = u · (∇f),

where ∇f is the gradient of f .

Remark 5.13. The quantity ∂f
∂xj

(m) is equal to ∇ejf(m), where ej ∈ Rs is the unit

vector whose jth entry is equal to 1 and is the only nonzero entry of ej.

Directional derivatives allow us to take repeatedly the derivative of a function f

in a particular direction. This is needed for Theorem 5.1 to apply. We use directional

derivatives, partial derivatives, and Theorem 5.1 to prove the following theorem.
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Theorem 5.14. Suppose that there exists an integer j with 1 ≤ j ≤ s such that

|rj| ≥ qX|x|λs(ρψ + 1). (5.30)

Then

IF,ψ(x,X, r, q) ≪M,ψ min

{
Xs, Xs−M

(
1

q(ρψ + 1)
√
s
∥r∥
)−M

}
(5.31)

for all M ≥ 0.

The proof of Theorem 5.14 uses an upper bound for u⊤Bu when B is a symmetric

matrix and u is a unit vector. Therefore, we prove the next lemma before proving

Theorem 5.14.

Lemma 5.15. If B ∈Ms(R) is a symmetric s× s matrix and w ∈ Rs, then

|w⊤Bw| ≤ σs∥w∥2,

where σs is the largest singular value of B.

Remark 5.16. If B is positive definite, then σs = λs, where λs is the largest eigenvalue

of B.

Proof of Lemma 5.15. Using the spectral theorem for symmetric matrices, we can

write the matrix B as

B = P⊤DP,

where P is an orthogonal matrix and D = diag(d1, . . . , ds) is a diagonal matrix. Note

that {dj}sj=1 is the set of eigenvalues of B. Then

w⊤Bw = w⊤P⊤DPw. (5.32)
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Let v = Pw. Note that ∥v∥ = ∥w∥ since P is orthogonal. Substituting v = Pw

into (5.32), we see that

w⊤Bw = v⊤Dv

=
s∑
j=1

djv
2
j . (5.33)

By taking absolute values, we find that

∣∣w⊤Bw
∣∣ = ∣∣∣∣∣

s∑
j=1

djv
2
j

∣∣∣∣∣
≤

s∑
j=1

|dj|v2j . (5.34)

Without loss of generality, assume that |d1| ≤ |d2| ≤ · · · ≤ |ds|. Therefore, (5.34)

implies that

∣∣w⊤Bw
∣∣ ≤ s∑

j=1

|ds|v2j

= |ds|
s∑
j=1

v2j

= |ds|∥v∥2.

Because ∥v∥ = ∥w∥ and the largest singular value of B is |ds|, we obtain the result

of this lemma.

Now that we have Lemma 5.15, we prove Theorem 5.14.

Proof of Theorem 5.14. Suppose that r has an entry rj that satisfies (5.30). Set j

with 1 ≤ j ≤ s to be such that rj ≥ rk for all 1 ≤ k ≤ s. Then rj satisfies (5.30) and

|rj| ≥
1√
s
∥r∥. (5.35)
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(If rj did not satisfy (5.35), then

∥r∥ =

√√√√ s∑
k=1

r2k ≤

√√√√ s∑
k=1

r2j

<

√√√√ s∑
k=1

1

s
∥r∥2 =

√
∥r∥2 = ∥r∥,

which contradicts the fact that ∥r∥ = ∥r∥.)

Lemma 5.10 says that

IF,ψ(x,X, r, q) ≪ψ X
s,

so it suffices to prove that

IF,ψ(x,X, r, q) ≪M,ψ X
s−M

(
1

q(ρψ + 1)
√
s
∥r∥
)−M

. (5.36)

From (5.25), we have

IF,ψ(x,X, r, q) = Xs

∫
Rs

e(f(m))ψ(m) dm,

where

f(m) = X2xF (m)− 1

q
Xm · r. (5.37)

Therefore, to prove (5.36), it suffices to show that

∫
Rs

e(f(m))ψ(m) dm ≪M,ψ

(
X

q(ρψ + 1)
√
s
∥r∥
)−M

. (5.38)

We will use partial derivatives, directional derivatives, and Theorem 5.1 to prove
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(5.38). In order to apply Theorem 5.1, we show that for all m ∈ supp(ψ), we have

∣∣∣∣ ∂f∂xj (m)

∣∣∣∣ ≥ X

q(ρψ + 1)
√
s
∥r∥ (5.39)

and

∣∣∣∣∣∂kf∂xkj
(m)

∣∣∣∣∣ ≤
∣∣∣∣ ∂f∂xj (m)

∣∣∣∣
for all k ≥ 2. Because f is a quadratic polynomial in terms of the mj, it suffices to

show that for all m ∈ supp(ψ), we have (5.39) holding and

∣∣∣∣∂2f∂x2j (m)

∣∣∣∣ ≤ ∣∣∣∣ ∂f∂xj (m)

∣∣∣∣ . (5.40)

(Any higher partial derivatives of f equal 0.)

Let u ∈ Rs be a unit vector. We would like to compute the directional derivative

∇uf . In order to do this, we need to know the gradient of f , so we compute this in

the next lemma.

Lemma 5.17. The gradient of f is

∇f(m) = X2xAm− 1

q
Xr. (5.41)

In particular, the partial derivative ∂f
∂xj

(m) in the jth coordinate is

∂f

∂xj
(m) = X2x

s∑
k=1

ajkmk −
1

q
Xrj. (5.42)
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Proof of Lemma 5.17. Now

f(m) =
1

2
X2xm⊤Am− 1

q
Xm · r

= X2x

(
1

2

s∑
ℓ=1

aℓℓm
2
ℓ +

s∑
ℓ=1

∑
1≤k<ℓ

aℓkmℓmk

)
− 1

q
X

s∑
ℓ=1

rℓmℓ.

Thus, by using the fact that A is a symmetric, we find that the gradient of f is

∇f(m) =

(
∂f
∂x1

(m) · · · ∂f
∂xs

(m)

)⊤

=


X2x

(
a11m1 +

∑
1≤k≤s
k ̸=1

a1kmk

)
− 1

q
Xr1

...

X2x

(
assms +

∑
1≤k≤s
k ̸=s

askmk

)
− 1

q
Xrs



=


X2x

∑s
k=1 a1kmk − 1

q
Xr1

...

X2x
∑s

k=1 askmk − 1
q
Xrs


= X2xAm− 1

q
Xr.

By looking at the jth entry of ∇f(m), we deduce (5.42).

In light of Lemma 5.17, the directional derivative ∇uf is

∇uf(m) = u ·
(
X2xAm− 1

q
Xr

)
= X2xu⊤Am− 1

q
Xu · r.
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Notice that

u⊤Am =
s∑
ℓ=1

s∑
k=1

aℓkuℓmk

=
s∑
ℓ=1

s∑
k=1

akℓuℓmk

since A is symmetric. Thus, by the linearity of the gradient, we obtain

∇(∇uf)(m) = X2xAu.

Therefore,

(∇u)
2f(m) = X2xu⊤Au. (5.43)

Towards showing that (5.40) holds, we prove an upper bound for |(∇u)
2f(m)|

that does not depend on u or m.

Lemma 5.18. For f as in (5.37), we have

∣∣(∇u)
2f(m)

∣∣ ≤ X2|x|λs. (5.44)

In particular,

∣∣∣∣∂2f∂x2j (m)

∣∣∣∣ ≤ X2|x|λs. (5.45)

Remark 5.19. A similar result can be shown if F is any (not just a positive definite)

quadratic form. Instead of λs, the upper bound would have the largest singular value

of the Hessian matrix associated with the quadratic form.

Proof of Lemma 5.18. An application of Lemma 5.15 and Remark 5.16 to (5.43)

proves (5.44) since u is a unit vector. We obtain (5.45) by noting that ∂2f
∂x2j

(m) equals
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(∇ej)
2f(m).

We now begin to compute an lower bound for
∣∣∣ ∂f∂xj (m)

∣∣∣. (A lower bound for∣∣∣ ∂f∂xj (m)
∣∣∣ is needed to show (5.39) and (5.40) hold for all m ∈ supp(ψ).) By using the

triangle inequality with (5.42) in Lemma 5.17, we obtain

∣∣∣∣ ∂f∂xj (m)

∣∣∣∣ ≥ 1

q
X|rj| −X2|x|

∣∣∣∣∣
s∑

k=1

ajkmk

∣∣∣∣∣ . (5.46)

To effectively use this lower bound for
∣∣∣ ∂f∂xj (m)

∣∣∣, we need an upper bound for

|
∑s

k=1 ajkmk|. The following lemma is a step towards finding such an upper bound.

Lemma 5.20. For m ∈ supp(ψ), then

∥Am∥ ≤ λsρψ. (5.47)

Proof of Lemma 5.20. By definition of the Eurclidean norm, we have

∥Am∥2 = m⊤A⊤Am

= m⊤A2m

since A is symmetric.

Because A2 is a positive definite symmetric matrix, Lemma 5.15 and Remark 5.16

apply, and we obtain

∥Am∥2 ≤ ∥m∥2λ2s. (5.48)

(Note that each eigenvalue of A2 is the square of an eigenvalue of A. Therefore, λ2s

is the largest eigenvalue of A2.) By taking square roots of both sides of (5.48), we
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obtain

∥Am∥ ≤ λs∥m∥. (5.49)

Because m ∈ supp(ψ), we know that ∥m∥ ≤ ρψ. Applying this to (5.49), we obtain

(5.47).

Since
∑s

k=1 ajkmk is the jth entry of the vector Am, we use the previous lemma

to give an upper bound for |
∑s

k=1 ajkmk|. We state this upper bound in the next

lemma.

Lemma 5.21. For m ∈ supp(ψ), then

∣∣∣∣∣
s∑

k=1

ajkmk

∣∣∣∣∣ ≤ λsρψ. (5.50)

Proof of Lemma 5.21. Observe that

∣∣∣∣∣
s∑

k=1

ajkmk

∣∣∣∣∣ ≤
√√√√ s∑

ℓ=1

(
s∑

k=1

aℓkmk

)2

= ∥Am∥

≤ λsρψ

by Lemma 5.20.

We now apply Lemma 5.21 to (5.46) to obtain

∣∣∣∣ ∂f∂xj (m)

∣∣∣∣ ≥ 1

q
X|rj| −X2|x|λsρψ (5.51)

for all m ∈ supp(ψ). We are now in a position to prove that (5.39) and (5.40) hold

for all m ∈ supp(ψ).
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Lemma 5.22. For all m ∈ supp(ψ), the statement (5.39) holds.

Proof of Lemma 5.22. The inequality (5.30) can be rewritten as

−X|x|λs ≥ − 1

q(ρψ + 1)
|rj|.

Using this in (5.51), we obtain

∣∣∣∣ ∂f∂xj (m)

∣∣∣∣ ≥ 1

q
X|rj| −

ρψ
q(ρψ + 1)

X|rj|

=
1

q(ρψ + 1)
X|rj|. (5.52)

By applying (5.35) to (5.52), we obtain (5.39).

We now prove that (5.40) holds for all m ∈ supp(ψ).

Lemma 5.23. For all m ∈ supp(ψ), the statement (5.40) holds.

Proof of Lemma 5.22. By applying (5.30) to (5.51), we find that

∣∣∣∣ ∂f∂xj (m)

∣∣∣∣ ≥ X2|x|(ρψ + 1)λs −X2|x|λsρψ

= X2|x|λs.

Now (5.45) in Lemma 5.18 says that
∣∣∣∂2f∂x2j

(m)
∣∣∣ ≤ X2|x|λs, so we obtain (5.40).

Lemmas 5.22 and 5.23 state that (5.39) and (5.40) hold for all m ∈ supp(ψ). This
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is sufficient to apply Theorem 5.1 and obtain for all M ≥ 0,

∫
Rs

e(f(m))ψ(m) dm

=

∫
R
· · ·
∫
R
e(f(m))ψ(m) dmj dm1 dm2 · · · dmj−1 dmj+1 dmj+2 · · · dms

≪M,ψ

∫
Sψ,j

(
X

q(ρψ + 1)
√
s
∥r∥
)−M

dm1 dm2 · · · dmj−1 dmj+1 dmj+2 · · · dms,

(5.53)

where Sψ,j ⊆ Rs−1 is the set of (m1,m2, . . . ,mj−1,mj+1,mj+2, . . . ,ms)
⊤ in which

there exists mj ∈ R such that (m1,m2, . . . ,ms)
⊤ ∈ supp(ψ). Because ψ has compact

support, the set Sψ,j is bounded and (5.53) implies (5.38).

For our purposes, we will want to apply the principle of nonstationary phase

outside of an s-dimensional ball as opposed to outside of an s-dimensional cube.

Therefore, we have the following corollary.

Corollary 5.24. If

∥r∥ ≥ qX|x|λs(ρψ + 1)
√
s, (5.54)

then

IF,ψ(x,X, r, q) ≪M,ψ min

{
Xs, Xs−M

(
1

q(ρψ + 1)
√
s
∥r∥
)−M

}
(5.55)

for all M ≥ 0.

Proof. If r satisfies (5.54), then there exists an integer j with 1 ≤ j ≤ s such that

rj satisfies (5.30). (If not, then ∥r∥ would be less than qX|x|λs(ρψ + 1)
√
s, which

would contradict (5.54).) An application of Theorem 5.14 gives the result of this

corollary.
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Chapter 6

Putting estimates together

In this chapter, we use results from previous chapters to prove Theorem 1.1 and

Corollaries 1.4 and 1.5. We begin this chapter by splitting up the weighted represen-

tation number RF,ψ,X(n) into a main term and some error terms. From (3.21), we see

that

RF,ψ,X(n) =MF,ψ,X(n) + EF,ψ,X,1(n) + EF,ψ,X,2(n) + EF,ψ,X,3(n), (6.1)

where

MF,ψ,X(n) = 2Re

( ∑
1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx) IF,ψ(x,X,0, q)T0(q, n;x) dx

)
, (6.2)

EF,ψ,X,1(n) = 2Re

( ∑
1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)

×
∑
r∈Zs

0<∥r∥≤qX|x|λs(ρψ+1)
√
s

IF,ψ(x,X, r, q)Tr(q, n;x) dx

)
, (6.3)
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EF,ψ,X,2(n) = 2Re

( ∑
1≤q≤Q

1

qs

∫ 1
qQ

1
q(q+Q)

e(−nx)

×
∑
r∈Zs

∥r∥≤qX|x|λs(ρψ+1)
√
s

IF,ψ(x,X, r, q)Tr(q, n;x) dx

)
, (6.4)

and

EF,ψ,X,3(n) = 2Re

( ∑
1≤q≤Q

1

qs

∫ 1
qQ

0

e(−nx)

×
∑
r∈Zs

∥r∥>qX|x|λs(ρψ+1)
√
s

IF,ψ(x,X, r, q)Tr(q, n;x) dx

)
. (6.5)

We call MF,ψ,X(n) the main term of RF,ψ,X(n). We call EF,ψ,X,1(n), EF,ψ,X,2(n), and

EF,ψ,X,3(n) the error terms of RF,ψ,X(n).

In this chapter, we will provide an asymptotic for the main term MF,ψ,X(n) and

upper bounds for the absolute values of the error terms. To do this, we will first prove

some more results that will help us prove Theorem 1.1 and Corollaries 1.4 and 1.5.

6.1 Stating some supporting results

In this section, we state some lemmas that will be used to provide an asymptotic

for the main term MF,ψ,X(n) and upper bounds for the absolute values of the error

terms.

6.1.1 An upper bound for the absolute value of a particular

sum

The sum in the following lemma will come up multiple times in our estimates.

(The sum is related to our estimate of the sum Tr(q, n;x).) The lemma provides

provides an upper bound for the absolute value of this sum.
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Lemma 6.1. Let Q ≥ 1 and let C and n be nonzero integers. For an integer q, we

split q into q = q0q1 such that q0 is the largest factor of q having all of its prime

divisors dividing C so that gcd(q1, C) = 1. Then

∑
1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q) ≪ε Q

1/2+ετ(n)
∏
p|C

(1− p−1/2)−1 (6.6)

for any ε > 0.

Remark 6.2. In our applications of Lemma 6.1, the integer C is equal to 2 det(A).

The proof of Lemma 6.1 requires another lemma, which we now state and prove.

Lemma 6.3. Let Q ≥ 1 and let C and n be nonzero integers. For an integer q, we

split q into q = q0q1 such that q0 is the largest factor of q having all of its prime

divisors dividing C so that gcd(q1, C) = 1. Then

∑
1≤q≤Q

q
−1/2
1 (gcd(n, q1))

1/2 ≪ Q1/2τ(n)
∏
p|C

(1− p−1/2)−1. (6.7)

Proof. Throughout this proof, we have q0 such that if p divides q0 then p divides C.

Observe that

∑
1≤q≤Q

q
−1/2
1 (gcd(n, q1))

1/2 ≤
∑

1≤q≤Q

q
−1/2
1

∑
d|n
d|q1

d1/2

≤
∑

1≤q0≤Q

∑
1≤q1≤Q/q0

q
−1/2
1

∑
d|n
d|q1

d1/2

=
∑
d|n

d1/2
∑

1≤q0≤Q

∑
1≤q1≤Q/q0
q1≡0 (mod d)

q
−1/2
1 (6.8)

by switching the order of summation.
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Let q2 be q1/d. Then

∑
d|n

d1/2
∑

1≤q0≤Q

∑
1≤q1≤Q/q0
q1≡0 (mod d)

q
−1/2
1 =

∑
d|n

d1/2
∑

1≤q0≤Q

∑
1≤q2≤Q/(q0d)

(q2d)
−1/2

=
∑
d|n

∑
1≤q0≤Q

∑
1≤q2≤Q/(q0d)

q
−1/2
2 .

Substituting this into (6.8), we have

∑
1≤q≤Q

q
−1/2
1 (gcd(n, q1))

1/2 ≤
∑
d|n

∑
1≤q0≤Q

∑
1≤q2≤Q/(q0d)

q
−1/2
2

≤
∑
d|n

∑
1≤q0≤Q

∑
1≤q2≤Q/q0

q
−1/2
2 .

Using part (b) Theorem 3.2 of [Apo76], we obtain

∑
1≤q≤Q

q
−1/2
1 (gcd(n, q1))

1/2 ≪
∑
d|n

∑
1≤q0≤Q

(
Q

q0

)1/2

= Q1/2
∑
d|n

∑
1≤q0≤Q

q
−1/2
0

≤ Q1/2
∑
d|n

∑
q0>0

q
−1/2
0

= Q1/2τ(n)
∑
q0>0

q
−1/2
0 . (6.9)

We see that (6.7) follows from (6.9), because

∑
q0>0

q
−1/2
0 =

∏
p|C

∞∑
j=0

(p−1/2)j

=
∏
p|C

(1− p−1/2)−1.

The proof of Lemma 6.1 follows quickly from Lemma 6.3
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Proof of Lemma 6.1. For any ε > 0, we have τ(q) ≪ε q
ε ≤ Qε and log(2q) ≪ε (2q)

ε ≤

(2Q)ε ≪ε Q
ε. Thus,

∑
1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q) ≪ε Q

ε
∑

1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 .

By applying Lemma 6.3, we obtain the result of Lemma 6.1.

6.1.2 The volume of an s-dimensional ball, integer lattice

point counting, and sums over integer lattice points

This subsection contains information about the volume of an s-dimensional ball,

integer lattice point counting, and sums over integer lattice points.

We begin by stating (without proof) the following result about the volume of an

s-dimensional ball that can be found in a number of sources (including, for example,

Section 2.C of Chapter 21 of [CS99]).

Lemma 6.4. The volume of an s-dimensional ball of radius R is

πs/2

Γ (s/2 + 1)
Rs. (6.10)

We are primarily concerned with s-dimensional balls centered at the origin. Let

Bs(R) be the closed s-dimensional ball centered at the origin with radius R. This

s-dimensional ball is defined by

Bs(R) = {x ∈ Rs : ∥x∥ ≤ R}. (6.11)

Let Bo
s(R) be the open s-dimensional ball centered at the origin with radius R. This
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s-dimensional ball is defined by

Bo
s(R) = {x ∈ Rs : ∥x∥ < R}. (6.12)

For a Lebesgue measurable subset W of Rs, let Vols(W ) be the s-dimensional

volume of W . Then Lemma 6.4 implies that

Vols(Bs(R)) = Vols(B
o
s(R)) =

πs/2

Γ (s/2 + 1)
Rs (6.13)

since the the boundary of an s-dimensional ball has zero volume.

We will also need to count the number of integer lattices points in an s-dimensional

ball centered at the origin. We first state a result that can be proven with a geometric

argument (originally due to Gauss [Gau11] for counting lattice points inside a circle).

Lemma 6.5. Let s be a positive integer and R ≥ 1. Then the number of integer

lattice points in Bs(R) is

|{m ∈ Zs : ∥m∥ ≤ R}| = πs/2

Γ (s/2 + 1)
Rs +Os(R

s−1). (6.14)

Remark 6.6. The error term in (6.14) is not the best possible error term for s ≥ 2. For

example, for s = 2, Huxley [Hux02] obtained an error term of O(R131/208). (This is not

necessarily the best result for s = 2; there is a preprint by Bourgain and Watt [BW17]

that claims a better error term for s = 2.) For s = 3, Heath-Brown [HB99] obtained

an error term of O(R21/16). For s ≥ 4, the best known error term is Os(R
s−2), which

can be proved using a classical formula for the number of representations of an integer

as the sum of four squares. (See, for instance, [Fri82].) Given all of this, the error

term in (6.14) is sufficient for our purposes.

Remark 6.7. Lemma 6.5 requires that R ≥ 1. A lower bound like this is required,
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because for fixed s, we have

lim
R→0+

Rs = lim
R→0+

Rs−1 = 0. (6.15)

However, since the zero vector is contained in the set {m ∈ Zs : ∥m∥ ≤ R}, we have

|{m ∈ Zs : ∥m∥ ≤ R}| ≥ 1 (6.16)

for all positive R. Therefore, we cannot have (6.14) be true for all R > 0. (The

implied constant would have to become larger and larger as R becomes closer and

closer to zero.)

Proof of Lemma 6.5. For each m ∈ Zs, place a unit s-dimensional cube centered at

m. Orient this unit s-dimensional cube so that each edge of the cube is parallel to

a coordinate axis. (Here we are assuming that our coordinate axes are orthogonal.)

We use Km to denote this unit s-dimensional cube centered at m in this particular

orientation.

Notice that Vols(Km) = 1 for each m ∈ Zs. We also note that if x,y ∈ Zs

and x ̸= y, then Kx and Ky have disjoint interiors. These facts allow us to turn

our integer lattice point counting problem into a question about the volume of a set.

Namely, we notice that

|{m ∈ Zs : ∥m∥ ≤ R}| = Vols

 ⋃
m∈Zs∩Bs(R)

Km

 . (6.17)

We now suppose that R ≥ max
{
1,

√
s
2

}
. Because the longest diagonal of a unit

s-dimensional cube is
√
s, we have

Bs

(
R−

√
s

2

)
⊆

⋃
m∈Zs∩Bs(R)

Km ⊆ Bs

(
R +

√
s

2

)
. (6.18)
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Therefore,

Vols

(
Bs

(
R−

√
s

2

))
≤ Vols

 ⋃
m∈Zs∩Bs(R)

Km

 ≤ Vols

(
Bs

(
R +

√
s

2

))
. (6.19)

Using (6.13), we obtain

Vols

(
Bs

(
R−

√
s

2

))
=

πs/2

Γ (s/2 + 1)

(
R−

√
s

2

)s
(6.20)

and

Vols

(
Bs

(
R +

√
s

2

))
=

πs/2

Γ (s/2 + 1)

(
R +

√
s

2

)s
. (6.21)

By the binomial theorem, we have

(R + h)s = Rs +
s−1∑
j=0

(
s

j

)
Rjhs−j (6.22)

for h ∈ R. Thus, since R ≥ 1, we have

Vols

(
Bs

(
R−

√
s

2

))
=

πs/2

Γ (s/2 + 1)
Rs +Os(R

s−1) (6.23)

and

Vols

(
Bs

(
R +

√
s

2

))
=

πs/2

Γ (s/2 + 1)
Rs +Os(R

s−1). (6.24)

Therefore, if R ≥ max
{
1,

√
s
2

}
, then (6.14) follows from (6.17), (6.19), (6.23), and

(6.24).
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Now suppose that 1 ≤ R <
√
s
2
. We still have

⋃
m∈Zs∩Bs(R)

Km ⊆ Bs

(
R +

√
s

2

)
(6.25)

and

Vols

 ⋃
m∈Zs∩Bs(R)

Km

 ≤ Vols

(
Bs

(
R +

√
s

2

))
. (6.26)

Furthermore, (6.24) still holds. Thus, using (6.17), we still have

|{m ∈ Zs : ∥m∥ ≤ R}| ≤ πs/2

Γ (s/2 + 1)
Rs +Os(R

s−1). (6.27)

Thus, |{m ∈ Zs : ∥m∥ ≤ R}| is bounded for R ∈
[
1,

√
s
2

)
. Therefore, the expression

|{m ∈ Zs : ∥m∥ ≤ R}| − πs/2

Γ (s/2 + 1)
Rs

is bounded for R ∈
[
1,

√
s
2

)
. Because Rs−1 ≥ 1 for R ∈

[
1,

√
s
2

)
, we have (6.14) for

R ∈
[
1,

√
s
2

)
.

As noted in Remark 6.7, we cannot have (6.14) be true for all R > 0. However,

we do want to have an upper bound for the number of points in Bs(R) that is true for

all R > 0. We first state a result that gives an exact count for the number of points

in Bs(R) if 0 < R < 1.

Lemma 6.8. Let s be a positive integer and 0 < R < 1. Then the number of integer

lattice points in Bs(R) is

|{m ∈ Zs : ∥m∥ ≤ R}| = 1.

Proof. The zero vector is in {m ∈ Zs : ∥m∥ ≤ R}. If m ∈ Zs is a nonzero vector,
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then ∥m∥ ≥ 1 > R. Therefore, the only vector in {m ∈ Zs : ∥m∥ ≤ R} is the zero

vector, and |{m ∈ Zs : ∥m∥ ≤ R}| = 1.

We use Lemmas 6.5 and 6.8 to obtain the following upper bound for the number

of points in Bs(R).

Theorem 6.9. Let s be a positive integer and R > 0. Then the number of integer

lattice points in Bs(R) is

|{m ∈ Zs : ∥m∥ ≤ R}| ≪s R
s + 1.

Proof. If R ≥ 1, then

|{m ∈ Zs : ∥m∥ ≤ R}| ≪s R
s ≤ Rs + 1

by Lemma 6.5.

If 0 < R < 1, then

|{m ∈ Zs : ∥m∥ ≤ R}| = 1 ≤ Rs + 1

by Lemma 6.8.

For R > 0, sometimes we will want to have an upper bound for the number of

integer lattice points m ∈ Zs satisfying 0 < ∥m∥ ≤ R. Such an upper bound is stated

in the next corollary.

Corollary 6.10. Let s be a positive integer and R > 0. Then the number of nonzero

integer lattice points in Bs(R) is

|{m ∈ Zs : 0 < ∥m∥ ≤ R}| ≪s R
s.
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Proof. If R ≥ 1, then the result of the corollary follows from Lemma 6.5.

If 0 < R < 1, then

|{m ∈ Zs : 0 < ∥m∥ ≤ R}| = 0 ≤ Rs.

We will have summations involving the Euclidean norm of vectors. The following

theorem provides an upper bound for such a sum.

Theorem 6.11. Suppose that B ≥ 1 and M > s. Then

∑
r∈Zs
∥r∥>B

∥r∥−M ≪s

(
1 +

4

M(M − s)

)
Bs−M .

Proof. Define L to be the lattice sum

L =
∑
r∈Zs
∥r∥>B

∥r∥−M =
∑
r∈Zs

∥r∥2>B2

(∥r∥2)−M/2.

For a nonnegative integer j, let

a(j) =
∣∣{r ∈ Zs : ∥r∥2 = j}

∣∣ .
Then

L =
∑
j>B2

a(j)j−M/2.

For R ≥ 1, let L(R) be

L(R) =
∑
r∈Zs

B<∥r∥≤R

∥r∥−M =
∑

B2<j≤R2

a(j)j−M/2

so that limR→∞ L(R) = L.
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We will use summation by parts. Therefore, it is useful to define the following

sum: For y ≥ 0, let

S(y) =

⌊y⌋∑
j=0

a(j). (6.28)

The definition of a(j) implies that

S(y) =
∣∣{r ∈ Zs : ∥r∥2 ≤ y}

∣∣
= |{r ∈ Zs : ∥r∥ ≤ √

y}| . (6.29)

Therefore, if y ≥ 1, we know from Lemma 6.5 that

S(y) ≪s y
s/2. (6.30)

Let B̃ = ⌊B2⌋ and R̃ = ⌊R2⌋. Then

L(R) =
∑

B̃<j≤R̃

(S(j)− S(j − 1))j−M/2 =
R̃∑

j=B̃+1

(S(j)− S(j − 1))j−M/2

since a(j) = S(j)− S(j − 1). By summation by parts,

L(R) = S(R̃)R̃−M/2 − S(B̃)(B̃ + 1)−M/2 −
R̃−1∑
j=B̃+1

S(j)((j + 1)−M/2 − j−M/2)

= S(R̃)R̃−M/2 − S(B̃)(B̃ + 1)−M/2 +
2

M

R̃−1∑
j=B̃+1

S(j)

∫ j+1

j

k−M/2−1 dk

= S(R̃)R̃−M/2 − S(B̃)(B̃ + 1)−M/2 +
2

M

R̃−1∑
j=B̃+1

∫ j+1

j

S(k)k−M/2−1 dk

= S(R̃)R̃−M/2 − S(B̃)(B̃ + 1)−M/2 +
2

M

∫ R̃

B̃+1

S(k)k−M/2−1 dk. (6.31)
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Using (6.30) in (6.31), we find that

L(R) ≪s R̃
(s−M)/2 + B̃s/2(B̃ + 1)−M/2 +

2

M

∫ R̃

B̃+1

k(s−M)/2−1 dk

= R̃(s−M)/2 + B̃s/2(B̃ + 1)−M/2 +
4

M(M − s)

(
(B̃ + 1)(s−M)/2 − R̃(s−M)/2

)
.

(6.32)

Taking the limits in (6.32) as R → ∞, we find that

L ≪s B̃
s/2(B̃ + 1)−M/2 +

4

M(M − s)
(B̃ + 1)(s−M)/2

since s < M and R̃ → ∞ as R → ∞. Now because B̃ = ⌊B2⌋, we have

L ≪s ⌊B2⌋s/2(⌊B2⌋+ 1)−M/2 +
4

M(M − s)
(⌊B2⌋+ 1)(s−M)/2

≤ Bs−M +
4

M(M − s)
Bs−M

since M > s > 0.

Instead of using the previous theorem, we will use a corollary of it for ease of use.

Corollary 6.12. Suppose that B ≥ 1 and M ≥ s+ 1. Then

∑
r∈Zs
∥r∥>B

∥r∥−M ≪s B
s−M . (6.33)

Proof. Because M ≥ s+ 1, we have

1 +
4

M(M − s)
≤ 1 +

4

s+ 1
,
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so

(
1 +

4

M(M − s)

)
Bs−M ≪s B

s−M .

The result of the corollary follows from Theorem 6.11.

Because such a sum will arise, we provide an upper bound for
∑

r∈Zs
∥r∥>B

∥r∥−M when

B ≥ 0.

Corollary 6.13. Suppose that B ≥ 0 and M ≥ s+ 1. Then

∑
r∈Zs
∥r∥>B

∥r∥−M ≪s 1. (6.34)

Proof. If B ≥ 1, then it follows from Corollary 6.12 that

∑
r∈Zs
∥r∥>B

∥r∥−M ≪s B
s−M ≤ 1

since M ≥ s+ 1.

Now suppose that 0 ≤ B < 1. Then

∑
r∈Zs
∥r∥>B

∥r∥−M = |{r ∈ Zs : ∥r∥ = 1}|+
∑
r∈Zs
∥r∥>1

∥r∥−M . (6.35)

Now

|{r ∈ Zs : ∥r∥ = 1}| = 2s (6.36)

since the vectors r ∈ Zs with ∥r∥ = 1 are the vectors with exactly one nonzero entry
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and that nonzero entry is either 1 or −1. From Corollary 6.12, we know that

∑
r∈Zs
∥r∥>1

∥r∥−M ≪s 1. (6.37)

Substituting (6.36) and (6.37) into (6.35), we obtain (6.34).

6.1.3 The compactness of the preimage of a positive definite

quadratic form

In this subsection, we prove that the set V = {m ∈ Rs : F (m) = n} is compact

when F is a positive definite quadratic form and n is a real number. Before we do

this, we prove that if m is in V , then there are bounds on ∥m∥.

Lemma 6.14. Suppose that F is a positive definite quadratic form in s variables.

Suppose that n is a real number. Let A ∈Ms(R) be the Hessian matrix of F . Let λ1

be the smallest eigenvalue of A, and let λs be the largest eigenvalue of A. Suppose

that m ∈ Rs satisfies F (m) = n. Then

√
2n

λs
≤ ∥m∥ ≤

√
2n

λ1
. (6.38)

Remark 6.15. Other bounds for the size of a real solution of F (m) = n have been

found when F is a positive definite integral quadratic form. For example, let fjk be

the coefficient of mjmk in F , where 1 ≤ j ≤ k ≤ s. Kornhauser [Kor90, Lemma 10]

showed that if F (m) = n, then

∥m∥ < 2(4sH)(s−1)/2n1/2,

where H = max1≤j≤k≤s |fjk|. (For a proof of this result, see the proof of Lemma 10

in [Kor89].)
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Remark 6.16. The condition that F is positive definite is crucial in Lemma 6.14. For

example, the set {(m1,m2)
⊤ ∈ R2 : m2

1−m2
2 = 1} is a hyperbola and is not bounded.

Proof of Lemma 6.14. We first use Lemma 5.15 and Remark 5.16 to prove the first

inequality in (6.38). By Lemma 5.15 and Remark 5.16, we have

n = F (m) =
1

2
m⊤Am ≤ 1

2
λs∥m∥2. (6.39)

Solving for ∥m∥ in (6.39), we obtain the first inequality in (6.38).

We now prove the second inequality in (6.38). Using the spectral theorem for

symmetric matrices, we can write the matrix A as

A = P⊤DP,

where P is an orthogonal matrix and D = diag(λ1, . . . , λs) is a diagonal matrix. Note

that {λj}sj=1 is the set of eigenvalues of A. Then

F (m) =
1

2
m⊤Am

=
1

2
m⊤P⊤DPm. (6.40)

Let v = Pm. Note that ∥v∥ = ∥m∥ since P is orthogonal. Substituting v = Pm

into (6.40), we see that

F (m) =
1

2
v⊤Dv

=
1

2

s∑
j=1

λjv
2
j . (6.41)

Since A is positive definite, each eigenvalue λj is positive. Without loss of gener-
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ality, we assume that 0 < λ1 ≤ λ2 ≤ · · · ≤ λs. Therefore, (6.41) implies that

F (m) ≥ 1

2

s∑
j=1

λ1v
2
j =

λ1
2
∥v∥2. (6.42)

Solving (6.42) for ∥v∥, we find that

∥v∥ ≤

√
2F (m)

λ1
.

Because ∥v∥ = ∥m∥ and F (m) = n, we obtain the second inequality in (6.38).

Lemma 6.14 shows that V is bounded. We now use the Heine-Borel theorem to

show that V compact.

Theorem 6.17. Suppose that F is a positive definite quadratic form in s variables.

Suppose that n is a real number. Then the set

V = {m ∈ Rs : F (m) = n} (6.43)

is compact.

Proof. Because F is continuous and {n} is a closed set, the preimage F−1({n}) = V

is a closed set. Lemma 6.14 says that V is bounded. Therefore, since V is closed and

bounded, the Heine-Borel theorem tells us that V is compact.

6.2 Analyzing the main term

Given the previous section, we now analyze the main term MF,ψ,X(n) of our

weighted representation number. Using (3.22), (3.19), and (5.25), we expand (6.2) to
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discover that

MF,ψ,X(n) = 2Re

( ∑
1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗

q
F (h)

)
dx

 (6.44)

(We are integrating x only in the region that qdx < 1, so we can drop the condition

qdx < 1 from the sum over d.) We use the fact that 2Re(z) = z + z for any z ∈ C to

expand (6.44) and obtain

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗

q
F (h)

)
dx

+
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e(X2xF (m))ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗
q
F (h)

)
dx

=
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗

q
F (h)

)
dx

+
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(nx)Xs

∫
Rs

e
(
−X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
dx. (6.45)
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Now, by mapping d to −d, we have

∑
Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗

q
F (h)

)

=
∑

−Q>d≥−(q+Q)
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
. (6.46)

Because e
(

·
q

)
is periodic modulo q, we can sum d over any reduced residue system

and obtain the same value for (6.46). Therefore, we rewrite (6.46) as

∑
Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗

q
F (h)

)
=

∑
Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
.

(6.47)

Substituting this into (6.45), we obtain

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
dx

+
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(nx)Xs

∫
Rs

e
(
−X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
dx. (6.48)
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By mapping x to −x in the second integral in x and simplifying, we see that

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∫ 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
dx

−
∑

1≤q≤Q

1

qs

∫ − 1
q(q+Q)

0

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm

×
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)
dx

=
∑

1≤q≤Q

1

qs

∑
Q<d≤q+Q
gcd(d,q)=1

e

(
−nd

∗

q

) ∑
h∈(Z/qZ)s

e

(
d∗

q
F (h)

)

×
∫ 1

q(q+Q)

− 1
q(q+Q)

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm dx. (6.49)

Because the sum over d is a complete sum that only depends on d modulo q, we can

map d∗ to d in (6.49) and obtain

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)

×
∫ 1

q(q+Q)

− 1
q(q+Q)

e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm dx. (6.50)

To provide an asymptotic for MF,ψ,X(n) with an appropriate error term, we will

need an upper bound for the absolute value of the sum

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
.

The next lemma gives such an upper bound.
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Lemma 6.18. If q is a positive integer and n is an integer, then

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
≪ (gcd(L, q0))

s/2(gcd(n, q1))
1/2q

1/2
0 q(s+1)/2τ(q) log(2q). (6.51)

Proof. If x < 1
q(q+Q)

, then

T0(q, n;x) =
∑

Q<d≤q+Q
gcd(d,q)=1

e

(
n
d∗

q

) ∑
h∈(Z/qZ)s

e

(
−d∗

q
F (h)

)
(6.52)

=
∑

d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
. (6.53)

(We obtained (6.53) from (6.52) by mapping d to −d∗ and noticing that the sum

over d is a complete sum modulo q.) Therefore, we can use Lemma 4.22 to provide

an upper bound for the absolute value of
∑

d∈(Z/qZ)×
∑

h∈(Z/qZ)s e
(
d
q
(F (h)− n)

)
and

obtain (6.51).

The rest of this section is devoted to providing an asymptotic for MF,ψ,X(n).

6.2.1 Extending to the singular integral

For a bump function ψ ∈ C∞
c (Rs), positive real numbers X and B, and a real

number n, we define the truncated singular integral JF,ψ(n,X;B) to be

JF,ψ(n,X;B) =

∫ B

−B
e(−nx)Xs

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm dx. (6.54)
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Notice that the truncated singular integral JF,ψ

(
n,X; 1

q(q+Q)

)
appears in (6.50) so

that

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
JF,ψ

(
n,X;

1

q(q +Q)

)
.

(6.55)

The first step towards providing an asymptotic for MF,ψ,X(n) is to extend (up to

some acceptable error term) the truncated singular integral JF,ψ

(
n,X; 1

q(q+Q)

)
to the

singular integral

JF,ψ(n,X) = Xs

∫ ∞

−∞
e(−nx)

∫
Rs

e
(
X2xF (m)

)
ψ(m) dm dx, (6.56)

where ψ ∈ C∞
c (Rs), X > 0, and n ∈ R. We do this in the following lemma.

Lemma 6.19. For a bump function ψ ∈ C∞
c (Rs), positive real numbers X and B,

and a real number n, we have

JF,ψ(n,X;B) = JF,ψ(n,X) +Oψ,s

(
(det(A))−1/2B1− s

2

)
(6.57)

Proof. By (5.25), the difference between the singular integral and the truncated sin-

gular integral JF,ψ(n,X;B) is equal to

JF,ψ(n,X)− JF,ψ(n,X;B) =

∫
|x|>B

e(−nx) IF,ψ(x,X,0, q) dx. (6.58)
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We apply Theorem 5.11 to this difference and obtain

JF,ψ(n,X)− JF,ψ(n,X;B) ≪ψ

∫
|x|>B

|x|−s/2(det(A))−1/2 dx

= 2(det(A))−1/2

∫ ∞

B

x−s/2 dx

=
2

1− s
2

(det(A))−1/2B1− s
2 .

This gives (6.57) with an implied constant of 2
1− s

2
.

We use Lemma 6.19 with B = 1
q(q+Q)

to conclude that

JF,ψ

(
n,X;

1

q(q +Q)

)
= JF,ψ(n,X) +Oψ,s

(
(det(A))−1/2(q(q +Q))s/2−1

)
. (6.59)

Substituting this into (6.55), we see that

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
JF,ψ(n,X)

+Oψ,s

(∣∣∣∣∣ ∑
1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)

× (det(A))−1/2(q(q +Q))s/2−1

∣∣∣∣∣
)
. (6.60)
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By Lemma 6.18 and the fact that s ≥ 4, we have

∑
1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
(det(A))−1/2(q(q +Q))s/2−1

≪
∑

1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(1−s)/2

× τ(q) log(2q)(det(A))−1/2(q(q +Q))s/2−1

≤ Ls/2(det(A))−1/2(2Q)s/2−1
∑

1≤q≤Q

(gcd(n, q1))
1/2q

1/2
0 q−1/2τ(q) log(2q)

= Ls/2(det(A))−1/2(2Q)s/2−1
∑

1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q). (6.61)

We apply Lemma 6.1 to (6.61) to obtain

∑
1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
(det(A))−1/2(q(q +Q))s/2−1

≪ε L
s/2(det(A))−1/22s/2−1Q(s−1)/2+ετ(n)

∏
p|2 det(A)

(1− p−1/2)−1 (6.62)

for any ε > 0.

Substituting (6.62) into (6.60), we conclude that

MF,ψ,X(n) =
∑

1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
JF,ψ(n,X)

+Oψ,s,ε

Ls/2(det(A))−1/2Q(s−1)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1

 .

(6.63)

6.2.2 Evaluating the singular integral

In this subsection, we evaluate the singular integral under certain conditions. Only

in this subsection, the positive definite form F might not be integral. All quantities

used in this subsection that involve F make sense if F is not integral.
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We first apply to (6.56) the change of variables x 7→ x/X2 to obtain

JF,ψ(n,X) = Xs−2

∫ ∞

−∞

∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx. (6.64)

Let σ̃F,ψ,∞(n,X) be the quantity

σ̃F,ψ,∞(n,X) =

∫ ∞

−∞

∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx (6.65)

so that

JF,ψ(n,X) = σ̃F,ψ,∞(n,X)Xs−2. (6.66)

We now prove the following theorem about σ̃F,ψ,∞(n,X).

Theorem 6.20. For a bump function ψ ∈ C∞
c (R), a real number n, and a positive

real number X, we have

σ̃F,ψ,∞(n,X) = σF,ψ,∞(n,X), (6.67)

where σF,ψ,∞(n,X) is the real factor defined in (1.5).

Proof. We use tent functions to create continuous approximations to the indicator

function 1{|x|<ε}, where ε > 0.

For x ∈ R, define the tent function t by

t(x) = max{0, 1− |x|}. (6.68)

For nonzero x ∈ R, define the sinc2 function by

sinc2(x) =

(
sin(πx)

πx

)2

. (6.69)
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Also, set sinc2(0) = 1 so that sinc2 function is a continuous function on R.

It is well-known that the tent function t is the Fourier transform of the sinc2

function and that the sinc2 function is the Fourier transform of the tent function t.

(See, for example, Appendix 2 of [Kam08].)

For η > 0, we define the function tη by

tη(x) = max

{
0, 1− |x|

η

}
. (6.70)

Using part b of Theorem 8.22 in [Fol99] about a scaling property for the Fourier

transform, we find that the Fourier transform of tη is

wη(x) = η

(
sin(πηx)

πηx

)2

(6.71)

and the Fourier transform of wη is tη.

If η, δ > 0, then we define the function Tη,δ by

Tη,δ(x) =
(
1 +

η

δ

)
tη+δ(x)−

η

δ
tη(x) (6.72)

for x ∈ R. After some manipulations, we find that

Tη,δ(x) =


1 if |x| ≤ η,

1− |x|−η
δ

if η < |x| < η + δ,

0 if |x| ≥ η + δ.

(6.73)

Let 0 < ε < 1. For x ∈ R, define T+
ε and T−

ε to be

T−
ε = Tε−ε2,ε2 = ε−1tε +

(
1− ε−1

)
tε−ε2 (6.74)
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and

T+
ε = Tε,ε2 =

(
1 + ε−1

)
tε+ε2 − ε−1tε. (6.75)

Using (6.73), we observe that

T−
ε (x) ≤ 1{|x|<ε} ≤ T+

ε (x) (6.76)

for all x ∈ R. Therefore, T−
ε (x) provides a lower bound for 1{|x|<ε}, and T+

ε (x)

provides a upper bound for 1{|x|<ε}.

Let

νF,ψ,n,X(ε) =

∫
|F (m)− n

X2 |<ε
ψ(m) dm.

Since

∫
|F (m)− n

X2 |<ε
ψ(m) dm =

∫
Rs

1{|F (m)− n
X2 |<ε}ψ(m) dm,

the inequalities in (6.76) imply that

∫
Rs

T−
ε

(
F (m)− n

X2

)
ψ(m) dm ≤ νF,ψ,n,X(ε) ≤

∫
Rs

T+
ε

(
F (m)− n

X2

)
ψ(m) dm.

(6.77)

Using (6.74) and (6.75), we manipulate some of the integrals that appear in (6.77)

and see that

∫
Rs

T−
ε

(
F (m)− n

X2

)
ψ(m) dm = UF,n,X(ε)− (ε− 1)2UF,n,X(ε− ε2) (6.78)
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and

∫
Rs

T+
ε

(
F (m)− n

X2

)
ψ(m) dm = (ε+ 1)2UF,n,X(ε+ ε2)− UF,n,X(ε), (6.79)

where

UF,n,X(η) =

∫
Rs
η−1tη

(
F (m)− n

X2

)
ψ(m) dm (6.80)

for η > 0.

In light of (6.78) and (6.79), we provide an asymptotic for UF,n,X(η) when η is

sufficiently close to ε.

Lemma 6.21. Let ε > 0. For η ∈ R with |η − ε| < ε, we have

UF,n,X(η) = σ̃F,ψ,∞(n,X) +OF,ψ,s

(
ε(2s−4)/(s+4)

)
. (6.81)

Proof of Lemma 6.21. Using the inverse Fourier transform and the fact that t̂η = wη,

we find that

UF,n,X(η) =

∫
Rs

∫ ∞

−∞
η−1wη(x)e

(
x
(
F (m)− n

X2

))
ψ(m) dx dm.

Applying the Fubini-Tonelli theorem, we see that

UF,n,X(η) =

∫ ∞

−∞

∫
Rs
η−1wη(x)e

(
x
(
F (m)− n

X2

))
ψ(m) dm dx. (6.82)

Therefore,

UF,n,X(η)− σ̃F,ψ,∞(n,X)

=

∫ ∞

−∞

(
η−1wη(x)− 1

) ∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx. (6.83)
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In order to prove (6.81), it suffices to prove (6.83) is OF,ψ,s

(
ε(2s−4)/(s+4)

)
. To do this,

we split up the integral over x into two regions: one in which |x| ≤ εδ and the other

in which |x| > εδ, where δ ∈ R will be chosen later. Let D =
[
−εδ, εδ

]
so that the

two regions under consideration for x are D and R \D.

Observe that

0 ≤ 1− η−1wη(x) ≤ 1. (6.84)

From a Taylor series approximation of wη(x), we see that

0 ≤ 1− η−1wη(x) ≪ min{1, η2x2} ≪ min{1, ε2x2} (6.85)

since 0 < η < 2ε.

Now

∣∣∣∣∫
D

(
η−1wη(x)− 1

) ∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx

∣∣∣∣
≤
∫
D

∣∣η−1wη(x)− 1
∣∣ ∫

Rs
|ψ(m)| dm dx. (6.86)

Using (6.85), we obtain

∣∣∣∣∫
D

(
η−1wη(x)− 1

) ∫
Rs

e
(
x
(
F (m)− n

X2

))
|ψ(m)| dm dx

∣∣∣∣
≪
∫ εδ

−εδ
ε2x2

∫
Rs

|ψ(m)| dm dx

≪ψ ε
2

∫ εδ

−εδ
x2 dx =

2

3
ε2+3δ

≪ ε2+3δ. (6.87)
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Now we look at the region in which |x| > εδ. By (6.84), we have

∣∣∣∣∫
R\D

(
η−1wη(x)− 1

) ∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx

∣∣∣∣
≤
∫
R\D

∣∣∣∣∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm

∣∣∣∣ dx. (6.88)

We apply Theorem 5.4 to (6.88) to obtain

∣∣∣∣∫
R\D

(
η−1wη(x)− 1

) ∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx

∣∣∣∣
≪ψ

∫
R\D

|x|−s/2| det(A)|−1/2 dx. (6.89)

Now

∫
R\D

|x|−s/2| det(A)|−1/2 dx = 2| det(A)|−1/2

∫ ∞

εδ
x−s/2 dx

= 2| det(A)|−1/2 1

s/2− 1
εδ(1−s/2)

≪F,s ε
δ(1−s/2). (6.90)

We substitute (6.90) into (6.89) to obtain

∫
R\D

(
η−1wη(x)− 1

) ∫
Rs

e
(
x
(
F (m)− n

X2

))
ψ(m) dm dx

≪F,ψ,s ε
δ(1−s/2). (6.91)

Combining (6.87) and (6.91) with (6.83), we see that

UF,n,X(η)− σ̃F,ψ,∞(n,X) ≪F,ψ,s ε
2+3δ + εδ(1−s/2). (6.92)

We now choose δ ∈ R so that the terms on the right-hand side of (6.92) are equal
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to each other. We do this by solving

ε2+3δ = εδ(1−s/2) (6.93)

for δ. We find that δ = −4/(s+4) solves (6.93). By taking δ = −4/(s+4) in (6.92),

we obtain (6.81).

Because ε2 < ε when 0 < ε < 1, Lemma 6.21 applies to all instances of UF,n,X in

(6.78) and (6.79). By applying Lemma 6.21 to (6.78) and (6.79), we find that

∫
Rs

T−
ε

(
F (m)− n

X2

)
ψ(m) dm = (2ε− ε2)

(
σ̃F,ψ,∞(n,X) +OF,ψ,s

(
ε(2s−4)/(s+4)

))
(6.94)

and

∫
Rs

T+
ε

(
F (m)− n

X2

)
ψ(m) dm = (2ε+ ε2)

(
σ̃F,ψ,∞(n,X) +OF,ψ,s

(
ε(2s−4)/(s+4)

))
(6.95)

By substituting (6.94) and (6.95) into (6.77) and then dividing by 2ε, we obtain

(
1− ε

2

) (
σ̃F,ψ,∞(n,X) +OF,ψ,s

(
ε(2s−4)/(s+4)

))
≤ 1

2ε

∫
|F (m)− n

X2 |<ε
ψ(m) dm

≤
(
1 +

ε

2

) (
σ̃F,ψ,∞(n,X) +OF,ψ,s

(
ε(2s−4)/(s+4)

))
. (6.96)

Because s ≥ 4, we observe that 2s−4
s+4

≥ 1
2
, so limε→0+ ε

(2s−4)/(s+4) = 0. Thus, by

taking limits in (6.96) as ε → 0+, we conclude that σ̃F,ψ,∞(n,X) ≤ σF,ψ,∞(n,X) ≤

σ̃F,ψ,∞(n,X). This implies (6.67).

Because we have determined that σ̃F,ψ,∞(n,X) = σF,ψ,∞(n,X) with Theorem 6.20,
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we now turn our attention to evaluating σF,ψ,∞(n,X). In order to do this, we compute

the density of real solutions to F (m) = n in the following theorem.

Theorem 6.22. Suppose that F is a positive definite quadratic form in s variables.

Let A be the Hessian matrix of F . Suppose that n is a real positive number and that

c is a real number. Then

lim
ε→0+

1

2ε

∫
|F (m)−n|<ε

c dm =
(2π)s/2c

Γ(s/2)
√
det(A)

ns/2−1. (6.97)

Proof. The integral on the left-hand side of (6.97) is

∫
|F (m)−n|<ε

c dm = c

∫
F (m)<n+ε

1 dm− c

∫
F (m)≤n−ε

1 dm

= c

∫
m⊤Am<2(n+ε)

1 dm− c

∫
m⊤Am≤2(n−ε)

1 dm. (6.98)

Using the spectral theorem for symmetric matrices, we can write the symmetric ma-

trix A as

A = P⊤DP,

where P is an orthogonal matrix and D = diag(λ1, . . . , λs) is a diagonal matrix with

the eigenvalues of A as diagonal entries.

Let B = diag(
√
λ1, . . . ,

√
λs)P . (There are no issues with taking the square roots

here since all of the eigenvalues of a positive definite matrix are positive.) Then

A = B⊤B

and

det(B) =
√
det(A) > 0.
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We perform the change of variables of m 7→ B−1m in (6.98) to obtain

∫
|F (m)−n|<ε

c dm =
c

| det(B)|

∫
(B−1m)⊤(B⊤B)B−1m<2(n+ε)

1 dm

− c

| det(B)|

∫
(B−1m)⊤(B⊤B)B−1m≤2(n−ε)

1 dm

=
c

| det(B)|

(∫
m⊤m<2(n+ε)

1 dm−
∫
m⊤m≤2(n−ε)

1 dm

)
. (6.99)

Because det(B) =
√
det(A) > 0 and m⊤m = ∥m∥2, we find that (6.99) is equivalent

to

∫
|F (m)−n|<ε

c dm =
c√

det(A)

(∫
∥m∥2<2(n+ε)

1 dm−
∫
∥m∥2≤2(n−ε)

1 dm

)
=

c√
det(A)

(∫
∥m∥<

√
2(n+ε)

1 dm−
∫
∥m∥≤

√
2(n−ε)

1 dm

)

=
c√

det(A)

(
Vols

(
Bo
s

(√
2(n+ ε)

))
− Vols

(
Bs

(√
2(n− ε)

)))
.

(6.100)

By (6.13), we have

∫
|F (m)−n|<ε

c dm =
c√

det(A)

(
πs/2

Γ (s/2 + 1)
(2(n+ ε))s/2 − πs/2

Γ (s/2 + 1)
(2(n− ε))s/2

)
(6.101)

Therefore,

lim
ε→0+

1

2ε

∫
|F (m)−n|<ε

c dm =
πs/2c

Γ (s/2 + 1)
√
det(A)

lim
ε→0+

(2(n+ ε))s/2 − (2(n− ε))s/2

2ε
.

(6.102)

We recognize that the limit on the right-hand side of (6.102) is the (symmetric)
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derivative of (2x)s/2 evaluated at x = n. The derivative of (2x)s/2 is s(2x)s/2−1, so

lim
ε→0+

1

2ε

∫
|F (m)−n|<ε

c dm =
s
2
(2π)s/2c

Γ (s/2 + 1)
√

det(A)
ns/2−1.

By noticing that Γ(s/2 + 1) = s
2
Γ(s/2) and simplifying, we obtain (6.97).

We will need an upper bound for the absolute value of the singular integral

JF,ψ(n,X). To do this, we first provide an upper bound for the absolute value of

σF,ψ,∞(n,X).

Corollary 6.23. Suppose that F is a positive definite quadratic form in s variables.

Let A be the Hessian matrix of F . Suppose that n and X are positive real numbers.

Suppose that ψ ∈ C∞
c (Rs). Then

|σF,ψ,∞(n,X)| ≤ (2π)s/2

Γ(s/2)
√
det(A)

ns/2−1X2−s max
m∈Rs

|ψ(m)|. (6.103)

Remark 6.24. Because ψ ∈ C∞
c (Rs), the quantity maxm∈Rs |ψ(m)| exists and is finite.

Proof of Corollary 6.23. By taking absolute values of both sides of (1.5), we obtain

|σF,ψ,∞(n,X)| ≤ lim
ε→0+

1

2ε

∫
|F (m)− n

X2 |<ε
|ψ(m)| dm

≤ lim
ε→0+

1

2ε

∫
|F (m)− n

X2 |<ε
max
m∈Rs

|ψ(m)| dm. (6.104)

We apply Theorem 6.22 to (6.104) to obtain (6.103).

The next corollary gives an upper bound for the absolute value of the singular

integral JF,ψ(n,X). It follows immediately from (6.66), Theorem 6.20, and Corol-

lary 6.23.

Corollary 6.25. Suppose that F is a positive definite quadratic form in s variables.

Let A be the Hessian matrix of F . Suppose that n and X are real positive numbers.
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Suppose that ψ ∈ C∞
c (Rs). Then

|JF,ψ(n,X)| ≤ (2π)s/2

Γ(s/2)
√

det(A)
ns/2−1 max

m∈Rs
|ψ(m)|.

We would like to obtain an equality for the singular integral JF,ψ(n,X) under

certain conditions. One such condition is requiring that ψ is equal to 1 on the set

VX = {m ∈ Rs : F (m) = n/X2}. Before we can give an equality under such a

condition, we prove a lemma that allows us to give an upper bound on how close V1

is to a point m ∈ Rs satisfying |F (m)− n| < ε.

Lemma 6.26. Suppose that F is a positive definite quadratic form in s variables.

Suppose that m ∈ Rs. Suppose that n is a real positive number and 0 < ε < n. Let

V = {v ∈ Rs : F (v) = n}. Let λ1 be the smallest eigenvalue of the Hessian matrix of

F . Then the inequality |F (m)− n| < ε implies that there exists v ∈ V such that

∥m− v∥ < ε

n− ε

√
n+ ε

2λ1
. (6.105)

Proof. Suppose that |F (m)− n| < ε. This is equivalent to the statement

n− ε < F (m) < n+ ε. (6.106)

Using Lemma 6.14, we find that

∥m∥ <

√
2(n+ ε)

λ1
. (6.107)

Let

v =

√
n

F (m)
m.
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Because F is a quadratic form,

F (v) = F

(√
n

F (m)
m

)
=

n

F (m)
F (m)

= n.

Therefore, v is in V .

We will prove the lemma by showing that (6.105) is satisfied by m and this

particular choice of v. Now

∥m− v∥ =

∥∥∥∥m−
√

n

F (m)
m

∥∥∥∥
=

∣∣∣∣1−√ n

F (m)

∣∣∣∣ ∥m∥

=

∣∣∣∣∣
√
F (m)−

√
n√

F (m)

∣∣∣∣∣ ∥m∥

=

∣∣∣∣∣ F (m)− n√
F (m)(

√
F (m) +

√
n)

∣∣∣∣∣ ∥m∥. (6.108)

By (6.106), (6.107), and the fact that |F (m)− n| < ε, we have

∣∣∣∣∣ F (m)− n√
F (m)(

√
F (m) +

√
n)

∣∣∣∣∣ ∥m∥ < ε√
n− ε(

√
n− ε+

√
n)

√
2(n+ ε)

λ1

<
ε

2(n− ε)

√
2(n+ ε)

λ1

Combining this with (6.108), we obtain (6.105).

We use the previous lemma to prove the following theorem that gives an equality

for σF,ψ,∞(n,X) when ψ is equal to 1 on the set VX .

Theorem 6.27. Suppose that F is a positive definite quadratic form in s variables.
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Let A be the Hessian matrix of F . Suppose that n and X are real positive numbers.

Suppose that ψ ∈ C∞
c (Rs). Suppose that ψ(m) = 1 whenever F (m) = n/X2. Then

σF,ψ,∞(n,X) =
(2π)s/2

Γ(s/2)
√

det(A)
ns/2−1X2−s. (6.109)

Proof. Let VX = {m ∈ Rs : F (m) = n/X2}. Therefore, ψ(m) = 1 if m ∈ VX . From

Theorem 6.17, we know that V is compact.

Let η > 0. Because ψ is continuous and VX is compact, there exists δ > 0 such

that if dist(m, VX) < δ, then |ψ(m) − 1| < η. (Because ψ is continuous, for every

v ∈ VX , there exists δv > 0 such that |ψ(m) − 1| < η for all m ∈ Rs satisfying

∥m− v∥ < δv. For v ∈ VX , let Uv = {m ∈ Rs : ∥m− v∥ < δv}. For a given v ∈ VX ,

note that |ψ(m) − 1| < η for any m ∈ Uv. Therefore, the collection {Uv}v∈VX is an

open cover of VX . Thus, the set Rs \
(⋃

v∈VX Uv

)
is closed. Because VX is compact

and Rs \
(⋃

v∈VX Uv

)
is closed, there exists δ > 0 such dist(m, VX) ≥ δ for every

m ∈ Rs \
(⋃

v∈VX Uv

)
. Therefore, if dist(m, VX) < δ, then m ∈

⋃
v∈VX Uv and

|ψ(m)− 1| < η.)

Observe that

lim
ε→0+

ε
n
X2 − ε

√
n
X2 + ε

2λ1
= 0,

so there exist infinitely many ε > 0 such that

ε
n
X2 − ε

√
n
X2 + ε

2λ1
≤ δ. (6.110)

Choose ε > 0 so that (6.110) holds and ε < n/X2. Then Lemma 6.26 implies that

dist(m, VX) < δ for all m ∈ Rs satisfying
∣∣F (m)− n

X2

∣∣ < ε. Therefore, for all m ∈ Rs
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satisfying
∣∣F (m)− n

X2

∣∣ < ε, we have |ψ(m)− 1| < η. Thus,

1

2ε

∫
|F (m)− n

X2 |<ε
(1− η) dm ≤ 1

2ε
νF,ψ,n,X(ε) ≤

1

2ε

∫
|F (m)− n

X2 |<ε
(1 + η) dm, (6.111)

where

νF,ψ,n,X(ε) =

∫
|F (m)− n

X2 |<ε
ψ(m) dm.

We have shown that for sufficiently small ε > 0 that if m ∈ Rs satisfies |F (m)−

n| < ε, then (6.111) holds. Taking limits in (6.111) as ε→ 0+, we obtain

lim
ε→0+

1

2ε

∫
|F (m)− n

X2 |<ε
(1− η) dm ≤ σF,ψ,∞(n,X) ≤ lim

ε→0+

1

2ε

∫
|F (m)− n

X2 |<ε
(1 + η) dm

(6.112)

since

σF,ψ,∞(n,X) = lim
ε→0+

1

2ε
νF,ψ,n,X(ε).

We apply Theorem 6.22 to (6.112) to obtain

(2π)s/2(1− η)

Γ(s/2)
√
det(A)

ns/2−1X2−s ≤ σF,ψ,∞(n,X) ≤ (2π)s/2(1 + η)

Γ(s/2)
√
det(A)

ns/2−1X2−s. (6.113)

Because η > 0 was arbitrary, we obtain (6.109) from (6.113).

The following corollary gives an equality for the singular integral JF,ψ(n,X) if

ψ(m) = 1 whenever F (m) = n/X2. It follows immediately from (6.66), Theo-

rem 6.20, and Theorem 6.27.

Corollary 6.28. Suppose that F is a positive definite quadratic form in s variables.

Let A be the Hessian matrix of F . Suppose that n and X are real positive numbers.
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Suppose that ψ ∈ C∞
c (Rs). Suppose that ψ(m) = 1 whenever F (m) = n/X2. Then

JF,ψ(n,X) =
(2π)s/2

Γ(s/2)
√

det(A)
ns/2−1.

6.2.3 Extending to the singular series

From (6.63), we know that

MF,ψ,X(n) = SF (n;Q)JF,ψ(n,X)

+Oψ,s,ε

Ls/2(det(A))−1/2Q(s−1)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1

 ,

(6.114)

where SF (n;Q) is the truncated singular series

SF (n;Q) =
∑

1≤q≤Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
. (6.115)

In the following lemma, we extend (up to some acceptable error term) the trun-

cated singular series to the singular series SF (n) as defined in (1.4).

Lemma 6.29. For Q ≥ 1, the truncated singular series SF (n;Q) is

SF (n;Q) = SF (n) +Os,ε

Ls/2Q(3−s)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1

 (6.116)

for any ε > 0.
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Proof. We apply Lemma 6.18 to find that

SF (n)−SF (n;Q) =
∑
q>Q

1

qs

∑
d∈(Z/qZ)×

∑
h∈(Z/qZ)s

e

(
d

q
(F (h)− n)

)
≪
∑
q>Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(1−s)/2τ(q) log(2q)

= Ls/2
∑
q>Q

(gcd(n, q1))
1/2q

−1/2
1 q1−s/2τ(q) log(2q). (6.117)

We now dyadically decompose the sum to obtain

∑
q>Q

(gcd(n, q1))
1/2q

−1/2
1 q1−s/2τ(q) log(2q)

=
∞∑
k=0

∑
2kQ<q≤2k+1Q

(gcd(n, q1))
1/2q

−1/2
1 q1−s/2τ(q) log(2q).

Because s ≥ 4, we find that

∑
q>Q

(gcd(n, q1))
1/2q

−1/2
1 q1−s/2τ(q) log(2q)

≤
∞∑
k=0

(2kQ)1−s/2
∑

2kQ<q≤2k+1Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q)

≤
∞∑
k=0

(2kQ)1−s/2
∑

1≤q≤2k+1Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q). (6.118)

We apply Lemma 6.1 to (6.118) to obtain

∑
q>Q

(gcd(n, q1))
1/2q

−1/2
1 q1−s/2τ(q) log(2q)

≪ε

∞∑
k=0

(2kQ)1−s/2(2k+1Q)1/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1

= 21/2+εQ(3−s)/2+ετ(n)

 ∏
p|2 det(A)

(1− p−1/2)−1

 ∞∑
k=0

(
2(3−s)/2+ε

)k
(6.119)
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for any ε > 0. The series
∑∞

k=0

(
2(3−s)/2+ε

)k
is a geometric series and converges if

ε < (s− 3)/2. If ε < (s− 3)/2, then

∞∑
k=0

(
2(3−s)/2+ε

)k
=
(
1− 2(3−s)/2+ε

)−1
. (6.120)

Substituting (6.120) into (6.119), we obtain

∑
q>Q

(gcd(n, q1))
1/2q

−1/2
1 q1−s/2τ(q) log(2q)

≪ε 2
1/2+εQ(3−s)/2+ετ(n)

(
1− 2(3−s)/2+ε

)−1 ∏
p|2 det(A)

(1− p−1/2)−1

≪s,ε Q
(3−s)/2+ετ(n)

∏
p|2 det(A)

(1− p−1/2)−1 (6.121)

for any ε ∈ R satisfying 0 < ε < (s− 3)/2.

Applying (6.121) to (6.117), we conclude that (6.116) holds for any ε ∈ R satisfying

0 < ε < (s− 3)/2. Because Q ≥ 1, we notice that (6.116) is true for all ε > 0, so we

only require that ε > 0.

Applying Lemma 6.29 to (6.114), we find that

MF,ψ,X(n) = SF (n;Q)JF,ψ(n,X)

+Oε

|JF,ψ(n,X)|Ls/2Q(3−s)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

Ls/2(det(A))−1/2Q(s−1)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1
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for any ε > 0. We apply Corollary 6.25 to obtain

MF,ψ,X(n) = SF (n)JF,ψ(n,X)

+Oψ,s,ε

Ls/2(det(A))−1/2ns/2−1Q(3−s)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

Ls/2(det(A))−1/2Q(s−1)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1


(6.122)

for any ε > 0.

We will not further analyze the singular series in this dissertation. We do mention

that the singular series is a product of p-adic densities, so the singular series is said to

contain local information for the representation number. For more information about

the singular series, please see Section 11.5 in [Iwa97].

6.3 Analyzing the error term EF,ψ,X,1(n)

We now analyze the error term EF,ψ,X,1(n). We apply Lemma 4.22 and Theo-

rem 5.11 to (6.3) to obtain

EF,ψ,X,1(n) ≪ψ

∑
1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(1−s)/2τ(q) log(2q)

×
∫ 1

q(q+Q)

0

min
{
Xs, |x|−s/2(det(A))−1/2

} ∑
r∈Zs

0<∥r∥≤qX|x|λs(ρψ+1)
√
s

1 dx.

(6.123)
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Using Corollary 6.10, we obtain

∑
r∈Zs

0<∥r∥≤qX|x|λs(ρψ+1)
√
s

1 =
∣∣{r ∈ Zs : 0 < ∥r∥ ≤ qX|x|λs(ρψ + 1)

√
s}
∣∣

≪s (qX|x|λs(ρψ + 1)
√
s)s.

Using this in (6.123), we find that

EF,ψ,X,1(n) ≪ψ,s (Xλs(ρψ + 1)
√
s)s

∑
1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(s+1)/2

× τ(q) log(2q)

∫ 1
q(q+Q)

0

min
{
Xs|x|s, |x|s/2(det(A))−1/2

}
dx

≤ (Xλs(ρψ + 1)
√
s)sLs/2

∑
1≤q≤Q

(gcd(n, q1))
1/2q

1/2
0 q(s+1)/2τ(q) log(2q)

× (det(A))−1/2

∫ 1
q(q+Q)

0

|x|s/2 dx

= (Xλs(ρψ + 1)
√
s)sLs/2

∑
1≤q≤Q

(gcd(n, q1))
1/2q

1/2
0 q(s+1)/2τ(q) log(2q)

× (det(A))−1/2 1
s
2
+ 1

(q(q +Q))−s/2−1

= (Xλs(ρψ + 1)
√
s)sLs/2

∑
1≤q≤Q

(gcd(n, q1))
1/2q

1/2
0 q−1/2τ(q) log(2q)

× (det(A))−1/2 1
s
2
+ 1

(q +Q)−s/2−1

= (Xλs(ρψ + 1)
√
s)sLs/2

∑
1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q)

× (det(A))−1/2 1
s
2
+ 1

(q +Q)−s/2−1. (6.124)

Since q > 0, we know that (q +Q)−s/2−1 < Q−s/2−1. Therefore,

EF,ψ,X,1(n) ≪ψ,s (Xλs(ρψ + 1))sLs/2(det(A))−1/2Q−s/2−1

×
∑

1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q). (6.125)
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By applying Lemma 6.1 to (6.125), we conclude that

EF,ψ,X,1(n) ≪ψ,s,ε X
sλssL

s/2(det(A))−1/2Q−s/2−1/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1

(6.126)

for any ε > 0.

6.4 Analyzing the error term EF,ψ,X,2(n)

We now analyze the error term EF,ψ,X,2(n). We apply Lemma 4.22 and Theo-

rem 5.11 to (6.4) to obtain

EF,ψ,X,2(n) ≪ψ

∑
1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(1−s)/2τ(q) log(2q)

×
∫ 1

qQ

1
q(q+Q)

|x|−s/2(det(A))−1/2
∑
r∈Zs

∥r∥≤qX|x|λs(ρψ+1)
√
s

1 dx. (6.127)

By Theorem 6.9, we know that

∑
r∈Zs

∥r∥≤qX|x|λs(ρψ+1)
√
s

1 dx =
∣∣{r ∈ Zs : ∥r∥ ≤ qX|x|λs(ρψ + 1)

√
s}
∣∣

≪s (qX|x|λs(ρψ + 1)
√
s)s + 1.
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Therefore,

∫ 1
qQ

1
q(q+Q)

|x|−s/2
∑
r∈Zs

∥r∥≤qX|x|λs(ρψ+1)
√
s

1 dx

≪s

∫ 1
qQ

1
q(q+Q)

(
(qXλs(ρψ + 1)

√
s)s|x|s/2 + |x|−s/2

)
dx

= (qXλs(ρψ + 1)
√
s)s

1
s
2
+ 1

(
(qQ)−s/2−1 − (q(q +Q))−s/2−1

)
+

1

1− s
2

(
(qQ)s/2−1 − (q(q +Q))s/2−1

)
≪s q

s/2−1
(
(Xλs(ρψ + 1))sQ−s/2−1 +Qs/2−1

)
(6.128)

since q ≤ Q.

Substituting (6.128) into (6.127), we find that

EF,ψ,X,2(n) ≪ψ,s

∑
1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q−1/2τ(q) log(2q)

× (det(A))−1/2
(
(Xλs(ρψ + 1))sQ−s/2−1 +Qs/2−1

)
≤ Ls/2(det(A))−1/2

(
Xsλss(ρψ + 1)sQ−s/2−1 +Qs/2−1

)
×
∑

1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q). (6.129)

By applying Lemma 6.1 to (6.129), we conclude that By applying Lemma 6.1 to

(6.129), we conclude that

EF,ψ,X,2(n) ≪ψ,s,ε L
s/2(det(A))−1/2

(
XsλssQ

−s/2−1/2+ε +Q(s−1)/2+ε
)

× τ(n)
∏

p|2 det(A)

(1− p−1/2)−1. (6.130)

for any ε > 0.
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6.5 Analyzing the error term EF,ψ,X,3(n)

We now analyze the error term EF,ψ,X,3(n). Applying Lemma 4.22 and Corol-

lary 5.24 to (6.5), we obtain for any M ≥ 0 that

EF,ψ,X,3(n) ≪M,ψ

∑
1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(1−s)/2τ(q) log(2q)

×
∫ 1

qQ

0

∑
r∈Zs

∥r∥>qX|x|λs(ρψ+1)
√
s

Xs−M
(

1

q(ρψ + 1)
√
s
∥r∥
)−M

dx.

(6.131)

In order to apply Corollary 6.13, we suppose thatM ≥ s+1. Applying Corollary 6.13

to (6.131), we obtain

EF,ψ,X,3(n) ≪M,ψ,s

∑
1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 q(1−s)/2τ(q) log(2q)

×Xs−M(q(ρψ + 1)
√
s)M

∫ 1
qQ

0

1 dx.

= Xs−M(ρψ + 1)MsM/2Q−1

×
∑

1≤q≤Q

(gcd(L, q0))
s/2(gcd(n, q1))

1/2q
1/2
0 qM−1/2−s/2τ(q) log(2q)

≤ Xs−M(ρψ + 1)MsM/2QM−s/2−1Ls/2

×
∑

1≤q≤Q

(gcd(n, q1))
1/2q

−1/2
1 τ(q) log(2q). (6.132)

We apply Lemma 6.1 to obtain

EF,ψ,X,3(n) ≪M,ψ,s,ε X
s−MQM−s/2−1/2+εLs/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1. (6.133)

for any ε > 0.
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6.6 Choosing parameters

By putting together estimates from previous sections and by choosing some pa-

rameters in this section, we prove Theorem 1.1 and Corollary 1.4. We substitute

(6.122), (6.126), (6.130), and (6.133) into (6.1) to obtain

RF,ψ,X(n) = SF (n)JF,ψ(n,X)

+Oψ,s,ε

Ls/2(det(A))−1/2ns/2−1Q(3−s)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

Ls/2(det(A))−1/2Q(s−1)/2+ετ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

XsλssL
s/2(det(A))−1/2Q−s/2−1/2+ετ(n)

∏
p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

(
Ls/2(det(A))−1/2

(
XsλssQ

−s/2−1/2+ε +Q(s−1)/2+ε
)

×τ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+OM,ψ,s,ε

Xs−MQM−s/2−1/2+εLs/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1

 (6.134)

for any ε > 0.

We would like to choose Q and X that somewhat balance all of the error terms

in (6.134). To do this, we find a value of Q that practically minimizes the right-hand

side of (6.130), which is an upper bound for the absolute value of EF,ψ,X,2(n). By

solving

XsλssQ
−s/2−1/2+ε = Q(s−1)/2+ε
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for Q, we find that

Q = λsX

will give a bound within a factor of 2 of the optimal bound for the right-hand side of

(6.130). (See the commentary after Theorem 2.3 in [MV06] for an explanation as to

why this choice of Q will give a bound within a factor of 2 of the optimal bound for

the right-hand side of (6.130). We also note that λsX is not necessarily an integer,

which is why we purposefully allowed Q to be not an integer in Section 3.1.)

In order to set Q = λsX, we need to place an additional restriction on X. Recall

that Q ≥ 1. Thus, to guarantee that Q = λsX ≥ 1, we require that X ≥ 1/λs.

By setting Q = λsX in (6.134), we obtain

RF,ψ,X(n)

= SF (n)JF,ψ(n,X)

+Oψ,s,ε

ns/2−1X(3−s)/2+ελ(3−s)/2+εs Ls/2(det(A))−1/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

X(s−1)/2+ελ(s−1)/2+ε
s Ls/2(det(A))−1/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1


+OM,ψ,s,ε

X(s−1)/2+ελM−s/2−1/2+ε
s Ls/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1

 (6.135)

for any ε > 0.

We notice that the only place that M occurs in (6.135) is as an exponent for λs.

Now because F is a positive definite integral quadratic form, the determinant of A is

at least one, so at least one of the eigenvalues of A must be at least one. Since λs is

the largest eigenvalue of A, we must have λs ≥ 1. Therefore, we want to set M to be

as small as possible. The only condition that we have on M is that M ≥ s+1, so we
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choose to set M = s+ 1. With this choice of M , we find that (6.135) becomes

RF,ψ,X(n)

= SF (n)JF,ψ(n,X)

+Oψ,s,ε

ns/2−1X(3−s)/2+ελ(3−s)/2+εs Ls/2(det(A))−1/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

X(s−1)/2+ελ(s−1)/2+ε
s Ls/2(det(A))−1/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

X(s−1)/2+ελ(s+1)/2+ε
s Ls/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1

 (6.136)

for any ε > 0. (Because M now is completely determined by s, we have OM,ψ,s,ε(f) =

Oψ,s,ε(f) for any function f .)

Recall that det(A) ≥ 1 and λs ≥ 1, so (det(A))−1/2 ≤ λs. Therefore,

λ(s−1)/2+ε
s (det(A))−1/2 ≤ λ(s+1)/2+ε

s

for any ε > 0. Thus, we conclude that

RF,ψ,X(n)

= SF (n)JF,ψ(n,X)

+Oψ,s,ε

ns/2−1X(3−s)/2+ελ(3−s)/2+εs (det(A))−1/2Ls/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1


+Oψ,s,ε

X(s−1)/2+ελ(s+1)/2+ε
s Ls/2τ(n)

∏
p|2 det(A)

(1− p−1/2)−1

 (6.137)

for any ε > 0. Because of (6.66) and Theorem 6.20, we deduce Theorem 1.1 from

(6.137).

We now want to choose X to minimize the error terms in (6.137). By setting the
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error terms equal to each other and canceling like expressions, we obtain

ns/2−1X(3−s)/2+ελ(3−s)/2+εs (det(A))−1/2 = X(s−1)/2+ελ(s+1)/2+ε
s . (6.138)

Solving (6.138) for X, we find that

X = n1/2λ(1−s)/(s−2)
s (det(A))1/(4−2s)

will give a bound within a factor of 2 of the optimal bound for the error terms

in (6.137). In order to set X = n1/2λ
(1−s)/(s−2)
s (det(A))1/(4−2s), we need to place an

additional restriction on n. Recall that X ≥ 1/λs. Thus, to guarantee that X ≥ 1/λs,

we require that n ≥ λ
2/(s−2)
s (det(A))1/(s−2).

By setting X = n1/2λ
(1−s)/(s−2)
s (det(A))1/(4−2s) in (6.137), we deduce that

R
F,ψ,n1/2λ

(1−s)/(s−2)
s (det(A))1/(4−2s)(n)

= SF (n)JF,ψ(n, n
1/2λ(1−s)/(s−2)

s (det(A))1/(4−2s))

+Oψ,s,ε

(
n(s−1)/4+ε/2λ(s−3)/(2s−4)−ε/(s−2)

s (det(A))(1−s)/(4s−8)−ε/(2s−4)

× Ls/2τ(n)
∏

p|2 det(A)

(1− p−1/2)−1

)
(6.139)

for any ε > 0. Because τ(n) ≪ε n
ε/2 for any ε > 0, we conclude Corollary 1.4 from

(6.139), (6.66), and Theorem 6.20.



133

6.7 Proof of Corollary 1.5

In this section, we complete a proof of Corollary 1.5. To prove Corollary 1.5, we

choose a bump function ψ that satisfies certain conditions. Notice that

|{m ∈ Zs : F (m) = n}| =
∑
m∈Zs

1{F (m)=n}.

Because

RF,ψ,X(n) =
∑
m∈Zs

1{F (m)=n}ψX(m),

we find that

|{m ∈ Zs : F (m) = n}| = RF,ψ,X(n) (6.140)

if ψX(m) = 1 for each m ∈ Zs satisfying F (m) = n. Because scaling by X > 0

does not necessarily preserve integrality of solutions to F (m) = n, we require that

ψX(x) = 1 whenever x ∈ Rs satisfies F (x) = n. Using the invertible mapping

x 7→ Xm and the fact that

ψX(m) = ψ

(
1

X
m

)
,

we deduce that ψ(m) = 1 whenever m ∈ Rs satisfies F (m) = n/X2 if and only if

ψX(x) = 1 whenever x ∈ Rs satisfies F (x) = n. (To prove this, use the fact that F

is a quadratic form. Thus, if x = Xm, then F (x) = X2F (m).)

To remove any dependence of ψ on n or X, we set

X = n1/2 (6.141)
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so that the only condition on ψ ∈ C∞
c (Rs) is that ψ(m) = 1 whenever m ∈ Rs

satisfies F (m) = 1. We note that it is possible for ψ to satisfy this condition because

of Theorem 6.17.

Observe that ψ now depends on F , so we now consider any implied constants

dependent on ψ to now be dependent on ψ and F . Therefore, by applying (6.141) to

(6.137), we obtain

RF,ψ,X(n) = SF (n)JF,ψ(n,X) +OF,ψ,s,ε

(
n(s−1)/4+ε/2

)
(6.142)

for any ε > 0. Because ψ(m) = 1 whenever m ∈ Rs satisfies F (m) = n/X2, we

deduce that Corollary 6.28, (6.140), and (6.142) imply that

|{m ∈ Zs : F (m) = n}| = SF (n)
(2π)s/2

Γ(s/2)
√

det(A)
ns/2−1 +OF,ψ,s,ε

(
n(s−1)/4+ε/2

)
(6.143)

for any ε > 0. Because |{m ∈ Zs : F (m) = n}| is a number that does not depend

on ψ, we can remove the dependency on ψ for the implied constant in (6.143) and

obtain

|{m ∈ Zs : F (m) = n}| = SF (n)
(2π)s/2

Γ(s/2)
√

det(A)
ns/2−1 +OF,s,ε

(
n(s−1)/4+ε/2

)
(6.144)

for any ε > 0. By replacing ε/2 with ε in (6.144), we conclude Corollary 1.5.

Remark 6.30. In the proof of Corollary 1.5, we could have set X to be cn1/2 for any

fixed c > 0. (We decided to choose c to be 1 in (6.141).) If X = cn1/2, then we would

require that ψ(m) = 1 whenever m ∈ Rs satisfies F (m) = 1/c2.

If we had set c to be λ
(1−s)/(s−2)
s (det(A))1/(4−2s), then Corollary 1.5 would follow

from Corollary 1.4.
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Chapter 7

A strong asymptotic local-global

principle for certain Kleinian

sphere packings

In this dissertation, we have developed a version of the Kloosterman circle method

with a bump function. A potential application of this version of the Kloosterman circle

method is a proof of a strong asymptotic local-global principle for certain integral

Kleinian sphere packings.

To state a conjectured strong asymptotic local-global principle for certain integral

Kleinian sphere packings, we first need to state some definitions. The bend of a

(d − 1)-sphere is the reciprocal of the radius of the (d − 1)-sphere. An (d − 1)-

sphere packing is called integral if the bend of each (d − 1)-sphere in the packing

is an integer. An integral (d − 1)-sphere packing is called primitive if the greatest

common divisor of all of the bends in the packing is 1. An (d− 1)-sphere packing is

Kleinian if its limit set is that of a geometrically finite group Γ of isometries of (d+1)-

dimensional hyperbolic space. Kontorovich and Nakamura [KN19] and Kontorovich

and Kapovich [KK21] proved that there are infinitely many conformally inequivalent
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integral Kleinian sphere packings.

There may be local or congruence restrictions on the bends in a fixed Kleinian

sphere packing. This motivates the following definition of admissibility.

Definition 7.1 (Admissible integers for sphere packings). Let P be an integral

Kleinian sphere packing. An integer m is admissible (or locally represented) if, for

every q ≥ 1, we have

m ≡ bend of some sphere in P (mod q) .

Before we state a conjectured strong asymptotic local-global principle for certain

Kleinian sphere packings, we briefly discuss orientation-preserving isometries of (d+

1)-dimensional hyperbolic space. The group of orientation-preserving isometries of

(d+ 1)-dimensional hyperbolic space can be identified with the group of orientation-

preserving Möbius transformations acting on Rd∪{∞}. These groups can be identified

with a certain group of 2×2 matrices with entries in a Clifford algebra. (See [Vah02],

[Ahl85], or [Wat93] for how this can be done.) This matrix group contains PSL2(C)

if d ≥ 2.

The following is a conjectured strong asymptotic local-global principle for certain

Kleinian sphere packings.

Conjecture 7.2. Let P be a primitive integral Kleinian (d − 1)-sphere packing in

Rd ∪ {∞} with an orientation-preserving automorphism group Γ of Möbius transfor-

mations.

1. Suppose that there exists a (d − 1)-sphere S0 ∈ P such that the stabilizer of

S0 in Γ contains (up to conjugacy) a congruence subgroup of PSL2(OK), where

K is an imaginary quadratic field and OK is the ring of integers of K. This

condition implies that d ≥ 3.

2. Suppose that there is a (d− 1)-sphere S1 ∈ P that is tangent to S0.
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Then every sufficiently large admissible integer is a bend of a (d − 1)-sphere in P.

That is, there exists an N0 = N0(P) such that if m is admissible and m > N0, then

m is the bend of a (d− 1)-sphere in P.

There has been work towards Conjecture 7.2. Examples of integral Kleinian

sphere packings are integral Soddy sphere packings and integral orthoplicial Apollo-

nian sphere packings. Kontorovich [Kon19] proved the strong asymptotic local-global

principle for integral Soddy sphere packings. Dias [Dia14] and Nakamura [Nak14]

independently did work towards proving the strong asymptotic local-global principle

for integral orthoplicial Apollonian sphere packings.

When this was written, the author did not know of a proof of a strong asymp-

totic local-global principle that applied to multiple conformally inequivalent integral

Kleinian sphere packings. The author is making progress towards proving Conjec-

ture 7.2, which would apply to multiple conformally inequivalent integral Kleinian

sphere packings. By using Möbius transformations on Rd ∪ {∞} and inversive coor-

dinates of (d− 1)-spheres, one can obtain a family of integral quadratic polynomials

in four variables with a coprimality condition on the variables. Potentially, the ver-

sion of the Kloosterman circle method discussed in this dissertation could be then

used to prove a result towards Conjecture 7.2 that applies to multiple conformally

inequivalent integral Kleinian sphere packings.
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