Oral Exam Syllabus

1 Lie Groups

- Definition of a Lie group; examples (including classical Lie groups)
- Lie algebras and their relation to Lie groups
 - Exponential mapping
 - Adjoint and co-adjoint representation
- Representations of compact, connected Lie groups
 - Peter-Weyl theorem
 - Maximal Tori: existence, uniqueness up to conjugation, Weyl covering theorem, examples for classical groups.
 - Weyl group; action on maximal torus and its Lie algebra
 - Complexification; roots; positive roots; dominant alcove
 - Dynkin diagrams
 - Weight spaces, dominant weights
 - Highest weight theorem
- Formulae
 - Weyl integration formula
 - Weyl character formula
 - Dimension formula
- Homogeneous vector bundles
 - Induced representations
 - Frobenius reciprocity
• Borel-Weil theorem

2 Functional Analysis

• Banach spaces
 Examples (L^p spaces, sequence spaces, direct sums, quotients)
 Linear functionals: duals, reflexive spaces, Hahn-Banach theorems
 Baire category theorem, Open Mapping theorem, Closed Graph theorem, Banach-Steinhaus (uniform boundedness) theorem
 Hilbert spaces (polarisation, adjoints, Riesz lemma)

• Topological devices
 Nets
 Compactness (Tychonoff theorem, Urysohn’s lemma, Stone-Weierstrass theorem)
 Banach-Alaoglu theorem

• Bounded operator theory
 Adjoints
 Spectrum
 Compact operators
 Fredholm alternative
 Spectral decomposition of compact, self-adjoint operators

• Differential operators and spectral theory
 Schwarz space
 Fourier transform
 Distributions
 Sobolev spaces
References

