Syllabus for Oral Qualifying Exam

Ming Xiao

Committee: Hector Sussmann, Xiaojun Huang (Chair), Xiaochun Rong, Jian Song

1. Complex analysis in Several Complex Variables
 1. Analytic Automorphism group of some special domain:
 • Laurent expansion in Reinhardt domain.
 • Analytic automorphism group of polydisc Δ^n.
 • Analytic automorphism group of unit ball B^n, Cartan’s Theorem.
 • Poincaré Theorem.

 2. Cauchy integral formula and its application.
 • Cauchy integral formula in polydisc, cauchy estimates.
 • Bochner-Matinelli formula.
 • Hartogs extension Theorem.
 • Bochner extension Theorem.

 3. Subharmonicity and convexity:
 • Properties of subharmonic functions and plurisubharmonic functions.
 • Domain of holomorphy, Continuity Principle.
 • Pseudoconvexity, Levi pseudoconvexity.
 • Oka’s Theorem.

 4. L^2 theory for $\bar{\partial}$ on pseudoconvex domains:
 • Morrey-Kohn-Hormander Theorem.
 • L^2 Existence Theorem for $\bar{\partial}$ operator.
• $\bar{\partial}$-Neumann problem.
• The Levi problem.

II. Some Riemannian and Complex Geometry

1. Riemann metric and connections.
2. Curvature.
3. Jacobi field
4. Hopf-Rinow Theorem and Hamamard Theorem
5. Kodaira-Bochner formula
6. Kodaira vanishing theorem.
7. Kodaira embedding theorem.
8. Hodge manifold and embedding.

References

[LH] Lars Hörmander, An Introduction to Complex Analysis in Several Complex Variables.
