Syllabus for Qualifying Exam, Spring 2000

Magdalena Chaves

Topic 1: Control Theory

1. Linear time-invariant finite-dimensional systems
 - formula for solution
 - continuous and discrete time

2. Controllability of linear systems
 - time-invariant controllability rank condition
 - Kalman controllability decomposition
 - Hautus Lemma
 - controllability under sampling
 - computing controls; finite horizon least squares
 - time-varying controllability rank condition

3. Controllability of nonlinear systems
 - local controllability
 - accessibility rank condition
 - reversible systems

4. Outputs
 - observability of time-invariant linear systems
 - sampled observability
 - local observability

5. Feedback
 - constant linear feedback; Pole-Shifting Theorem
 - disturbance rejection and invariance
 - stability and stabilizability
 - control-Lyapunov functions
 - observers and detectability; dynamic feedback

6. Linear Quadratic control
 - LQ systems
 - Deterministic Kalman filtering
 - infinite time problems

Topic 2: Numerical Analysis

1. Polynomial Approximation
 - Lagrange interpolation
- Cubic Hermite interpolation
- Piecewise polynomial approximation
- Some error results

2. Numerical Quadrature
 - (composite) Trapezoidal, Simpson’s and midpoint rules
 - Derivation and error formulas
 - Basic results of Gaussian quadrature formulas

 - Derivation and error estimates for one-step methods (e.g., Euler’s method)
 - Multistep methods (examples of explicit and implicit methods)
 - Predictor-corrector methods
 - Consistency, stability, and convergence of multistep methods

4. Finite Difference methods for partial differential equations
 - Laplace’s equation: 5 point difference scheme, error estimates using discrete maximum principle
 - Simple difference approximations of time dependent equations (transport, heat, and wave equations)
 - Error analysis by the maximum principle
 - Von Neumann stability condition

5. Finite Element methods for elliptic partial differential equations
 - Standard variational formulation of boundary value problems with Dirichlet or Neumann boundary conditions
 - Energy norm error estimates
 - Solution of the resulting matrix equations (existence and uniqueness of solutions, iterative schemes)