Syllabus for Oral Exam

WANG, Yu

Major topic: Partial Differential Equation

1. Four Important Linear PDEs
 1.1 Transport Equation
 1.2 Laplace’s Equation
 - Fundamental solution
 - Mean-value formula
 - Properties of harmonic functions (Maximum principles, smoothness)
 - Green’s function
 1.3 Heat Equation
 - Fundamental solution
 - Mean-value formula
 - Maximal principle (for bounded domain; for Cauchy problem)
 - Energy methods (for uniqueness for initial/boundary-value problem; for backward uniqueness)
 1.4 Wave Equation
 - d’Alembert’s formula
 - Solution by spherical means
 - Energy methods (for uniqueness for wave equation)
 1.5 Schrödinger Equation
 - Derivation of its fundamental solution

2. Sobolev Spaces
2.1 Holder spaces
2.2 Sobolev spaces
 Weak derivatives, definition of Sobolev spaces, elementary properties
2.3 approximation
2.4 extensions
2.5 Sobolev inequalities
 Gagliardo-Nirenberg-Sobolev inequality
 Morrey’s inequality
 General Sobolev inequality
2.6 Compactness
3. More General Second-Order Elliptic Equations
 3.1 Existence of weak solutions
 Definition of weak solution
 Lax-Milgram Thm
 Energy estimates
 Fredholm alternatives
 3.2 Regularity
 Interior regularity, boundary regularity
 3.3 Maximum principles
 Weak maximum principle
 Strong maximum principle

Minor topic: Numerical Solution for PDEs
 1. Approximation of function by polynomial and piecewise polynomial
Newton interpolation
Lagrange interpolation
Application to numerical differentiation and numerical quadrature
Error Estimates

2. Finite Difference Method for elliptic PDEs and heat PDEs
 discrete maximum principle
 discrete Green's function
 error estimates

3. Finite Element Methods for PDEs
 triangulation of domain
 barycentric coordinates
 variational formulations of elliptic PDE (standard Galerkin; mixed
 finite element methods; nonconforming methods)
 error estimates in H^1 and L^2
 solution of the discrete equations