Oral Qualifying Exam Syllabus
Colleen Duffy
28 February 2006

Committee: Profs. R. Wilson, R. Goodman, V. Retakh, E. Taft

Major Topic: Noncommutative Algebra

1. General noncommutative ring theory ([Lam] §§1-4, 7-9)
 - Semi-simple modules and rings
 - Wedderburn-Artin Theory
 - Jacobson Radical
 - modules over kG/representations of finite groups, characters
 - linear groups: Burnside’s Theorem

2. Quasideterminants ([GGRW])
 - definition - in terms of inverses and recursive
 - properties - e.g. row/column relations, Sylvester’s theorem
 - applications - e.g. Vandermonde quasideterminant, Vieta theorem, symmetric functions, quasi-Plucker coordinates

3. Algebras related to roots of equations
 - Q_n, $A(\Gamma)$ - definition, describe linear basis[GRSW]
 - Bergmans Diamond Lemma ([Bergman] §§1-3)
 - factorization of twisted polynomial rings: remainder and product theorems, definition and example of Wedderburn polynomials ([LL] §§1-2; [LL2] §§1-3)
 - Koszul algebras: definition, dual of, Hilbert series of ([Froberg] §§1-2)

4. Lie Algebras ([GW] Ch. 1-2) ([Humphreys] §§1-8)
 - Lie group and Lie algebra correspondence
 - classification of finite dimensional semisimple algebras over the complex numbers
 - classification of irreducible representations by highest weight (isomorphism)
 - some explicit examples
 - PBW Theorem

Minor Topic: Hopf Algebras

- Definition of Hopf algebra (coalgebra, bialgebra, antipode)
- Coideals and comodules
- Duality - A^0, C^*
- Definition of integrals and smash product
- H-module algebra and coalgebra
- Fundamental Theorem of Coalgebras
References

GRSW, Gelfand, Israel, Vladimir Retakh, Shirlei Serconek, and Robert Wilson. "On a Class of Algebras Associated to Directed Graphs."

