Oral Qualifying Exam Syllabus
Sijian Tang
Committee: Profs. M. Saks (chair), E. Allender, S. Kopparty, S. Saraf

1. Combinatorics and Graph Theory
 1.1 Combinatorics:

 Counting and set theory: binomial coefficients, recurrence relations, generating functions, inclusion-exclusion, Stirling's formula, Stirling number, Erdős-Ko-Rado, Fisher's inequality, Ray-Chaudhuri-Wilson.

 Lattice and poset: Distributive and geometry lattices, Birkhoff representation theorem, matroid, Mobius function, Weisner's theorem, Dilworth, Sperner, LYM inequality, linear extension of poset, dimension of poset.

 Correlation inequality: Harris-Kleitman, Fortuin-Kastekeyn-Ginibre, Ahlswede-Daylein, Sheppe XYZ.

 Matching theory: Hall's thm, König's thm, fractional cover and fractional matching, matching polytope.

 Ramsey Theory: Ramsey, infinite Ramsey, König's Lemma, Van de Waerden

 1.2 Probabilistic Methods:

 Basis: linearity of expectation, Markov's inequality, Chebyshev's inequality, Chernoff bound, binomial and Poisson distribution.

 Alternations: Ramsey, Independent number, graph with high girth and high chromatic number.

 Second moment method: Threshold function, subgraph, clique number.

 Lovasz local lemma: Symmetric and general versions, application to Ramsey.

 Poisson Paradigm: Janson's Inequality and application on chromatic number of $G_{n,1/2}$. Brun's sieve and application on EPIT.

 Martingales: Edge and vertex exposure, Azuma's inequality and application on chromatic number.

 1.3 Graph Theory:

 Matching: Tutte's thm, stable matching

 Connectivity: Menger's Thm, Max Flow/Min Cut, structure of 2-connected
graphs, minimal spanning tree, Kruskal's algorithm.

Extremal Problems: Turan's Theorem, Regularity lemma and its application on the Erdös-Stone Theorem, Chvatal-Rodl-Szemerédi-Trotter

Planarity: Euler's Formula, Kuratowski, Wagner

Coloring: Chromatic and Edge Chromatic Numbers, Brook's Theorem, Vizing's Theorem, Thomassen's Theorem, 5-color theorem, Galvin's Theorem, perfect graphs: definition and statements of theorems

2. Computational Complexity

P v. NP: Definitions, reducibility, the Cook-Levin Theorem, NP completeness of SAT, Independent set, 0/1 integer programming, coNP, what if P=NP

Diagonalization: Ladner's Theorem, Oracle Turing Machines, Baker-Gill-Solovay Theorem

Space-bounded complexity: definitions, configuration graph, PSPACE completeness of TQBF, NL completeness of PATH, Savitch's theorem, Immerman-Szelepcsényi Theorem

Polynomial hierarchy: Definitions of \(\Sigma_i \), \(\Pi_i \), complete problems, ATM, AP=PSPACE, Time/Space tradeoff for SAT

Circuits: \(P \subseteq P/poly \), CKT-SAT and alternate proof of Cook-Levin, Characterization of \(P/poly \) as TMs with advice, Karp-Lipton Theorem, Meyer's Theorem, existence of hard functions, Nonuniform Hierarchy Theorem, definitions of \(NC_i \), \(AC_i \)

Randomization: Definitions of RP, BPP and ZPP, \(\exists \exists P \cap \forall \forall coRP \), Error reduction, Sipser-Gacs Theorem, \(BPP \subseteq P/poly \), \(BPP \subseteq \Sigma_2^p \cup \Pi_2^p \), randomized reductions and definition of \(BP \cdot NP \)

Interactive Proofs: definitions, dIP=NP, GNI \(\in AM \), NP completeness of \(GI \) implies \(\Sigma_2 = \Pi_2 \), IP=PSPACE

Decision Trees: Decision tree complexity, 0- and 1-certificates, certificate complexity, randomized decision tree complexity, sensitivity, block sensitivity, degree, relationships between \(s(f), bs(f), C(f), D(f), \text{deg}(f), R(f) \)

Communication Complexity: Fooling sets, tiling lower bound, rank lower bound, Discrepancy, \(\varepsilon(f) \)