Committee: Alex Kontorovich (chair), Henryk Iwaniec, Stephen Miller, Jerrold Tunnell

1. Modular Forms

(a) The Modular Group
 i. $SL(2, \mathbb{Z})$ and Congruence Subgroups
 ii. Fundamental Domains for $SL(2, \mathbb{Z})$ and congruence subgroups
 iii. Cusps and Elliptic Points
 iv. The invariant measure of \mathcal{H} under $SL(2, \mathbb{R})$.

(b) Modular forms
 i. Modular and cusp forms
 ii. Fourier expansions
 iii. The dimensions of $M_k(\Gamma(1))$ and $S_k(\Gamma(1))$
 iv. Eisenstein Series, the Dedekind η function, Δ, and the Jacobi triple product formula
 v. The Petersson inner product on $S_k(\Gamma(1))$.
 vi. The L-functions for modular form and functional equations

(c) Hecke Operators
 i. The slash and Hecke operators on holomorphic functions
 ii. Coset representatives for $SL(2, \mathbb{Z}) \backslash M_n(\mathbb{Z})$
 iii. Commutativity and self-adjointness of the Hecke operators
 iv. Hecke eigenforms and Fourier coefficients
 v. Euler products for Hecke eigenforms

(d) The Rankin-Selberg Method
 i. The nonholomorphic Eisenstein series
 ii. Analytic continuations and Euler products for the product of two modular forms

2. Ergodic Theory

(a) Transformations on probability spaces
 i. Measure preserving transformations
 ii. Invertible Extensions
 iii. The unitary operator and its spectral properties
 iv. Poincaré Recurrence
 v. Strong mixing
 vi. Weak mixing and equivalent definitions
 vii. Ergodic transformations and equivalent definitions
 viii. Invariant measures for continuous maps
 ix. Unique Ergodicity
 x. Weyl’s equidistribution criterion
 xi. An ergodic proof of Weyl’s theorem on equidistribution of polynomial sequences

(b) Ergodic Theorems
 i. Mean ergodic theorem
ii. Maximal inequality and maximal ergodic theorem
iii. Birkhoff’s pointwise ergodic theorem

(c) Continued Fractions
 i. The Gauss map and Gauss measure
 ii. Consequences of ergodicity of the Gauss map
 iii. Badly approximable numbers

(d) Geodesic Flow
 i. Hyperbolic geometry
 ii. Geodesic and Horocycle Flow
 iii. Ergodicity of geodesic flow

3. Analytic Number Theory

 (a) Poisson summation
 (b) The Mellin transform and the \(\Gamma \) function
 (c) The Phragmen-Lindelof principle and convexity bounds
 (d) The Riemann \(\zeta \) function and Dirichlet L-functions
 i. Euler products
 ii. \(\theta \) functions
 iii. Analytic continuation and functional equations
 (e) Dirichlet’s theorem on primes in arithmetic progressions.
 (f) The Prime Number Theorem.