1. Logic

1.1. Model Theory.
 - Basics
 - Compactness, Lowenheim-Skolem theorems, Tarski-Vaught Test
 - Fraïssé
 - General theory
 - Quantifier elimination
 - Existence proofs
 - Classification (homogeneous tournaments)
 - Homogeneous k-dimensional permutations
 - \aleph_0-Categoricity
 - Omitting types
 - Atomic, prime, homogeneous, and saturated models
 - Oligomorphic automorphism group
 - Order Indiscernibles
 - Existence
 - Locally finite quadrangles
 - Stability implies true indiscernibles
 - Morley Rank
 - Definition in terms of types (Cantor-Bendixson)
 - Definition in terms of definable sets
 - \aleph_1-categoricity $\Rightarrow \aleph_0$-stability \iff Morley rank is defined
 - Rank 1, degree 1 \iff strongly minimal
 - Strongly minimal geometry
 - Strongly minimal $\Rightarrow \aleph_1$-categorical

1.2. Descriptive Set Theory.
 - Polish Spaces
 - Borel isomorphism theorem
 - Borel-generated topologies, Ramsey-Mackey theorem
 - Sequential trees
 - Borel and Projective Hierarchies
 - Basic definitions and facts, including closure properties
 - Existence of universal sets, non-collapsing
 - Every Polish space contains an analytic set that is not Borel
 - Equivalence of various definitions of analytic sets
 - Regularity properties of analytic sets
1.3. **Forcing.**
- Statements of fundamental forcing theorems
- Force CH, force ¬CH, force ♦
- Chain and closure conditions
- Cohen forcing
- Martin’s axiom
- Product forcing
- Easton’s theorem

2. **Combinatorics**
- **Enumeration:** bijections, binomial and multinomial coefficients, generating functions, recurrence relations, inclusion-exclusion
- **Extremal Results:** Sperner’s theorem, Dilworth’s theorem, Erdos-Ko-Rado
- **Probabilistic Method:** linearity of expectation, union bound, Chebyshev’s inequality, Chernoff bounds, Lovasz local lemma
- **Ramsey Theory:** Ramsey, infinite Ramsey, probabilistic lower bounds, statement of van der Waerden
- **Linear Programming:** duality, combinatorial min-max theorems
- **Entropy:** basic properties, Shearer’s lemma, Bregman’s theorem
- **Algebraic Methods:** Schwartz-Zippel Lemma, Combinatorial Nullstellensatz