1. Dynamic programming and HJB equations
 - Bellman’s principle of optimality
 - The HJB equation
 - Properties of the value function (continuous dependence on parameters, semiconcavity)
 - Viscosity solutions
2. Verification theorems
 - Smooth case
 - Nonsmooth case
 - Merton’s portfolio problem
3. Filtering theory
 - The Kalman-Bucy filter
 - Nonlinear filtering for SDEs (the Kallianpur-Striebel formula, the Zakai equation)
4. Linear quadratic optimal control problems
 - Solutions for finite time and time-average cost
 - Stochastic Riccati equations
 - Existence

Viscosity Solutions
1. The notion of viscosity solutions
2. The maximum principle for semicontinuous functions and comparison for the Dirichlet problem
3. Perron’s method and existence
4. Comparison
 - Comparison with more regularity
 - Estimates from comparison
 - Comparison with strict inequalities and without coercivity in \(u \)
 - Comparison and existence of unbounded solutions on unbounded domains
5. Limits of viscosity solutions
6. General and generalized boundary conditions
 - Boundary conditions in the viscosity sense
 - Existence and uniqueness for the Neumann problem
 - The generalized Dirichlet problem
 - Fully nonlinear boundary conditions
References

