Syllabus for Oral Qualifying Exam

Siao-Hao Guo

Committee: Zheng-Chao Han, Yanyan Li, Natasa Sesum (Chair), Jian Song

I. Mean Curvature Flow
 1. Definition of the Mean Curvature Flow:
 • First Variation of the Area Funtional
 • Special Solutions
 • Short Time Existence of the Flow

 2. Evolution of Geometric Quantities:
 • Maximum Principle
 • Comparison Principle
 • Evolution of Curvature
 • Consequences of Evolution Equations
 • Convexity Invariance

 3. Monotonicity Formula and Type I Singularities:
 • The Monotonicity Formula and Integral Estimates
 • Type I Singularities and the Rescaling Procedure
 • Analysis of Singularities
 • Hypersurfaces with Nonnegative Mean Curvature

 4. Type II Singularities:
 • Hamilton’s Blow-up
 • Hypersurfaces with Nonnegative Mean Curvature
 • Hamilton’s Harnack Estimates for Mean Curvature Flow

 4. Regularity Theory at the First Sinfular Time:
 • Lower Bound on Area Ratio / Clearing Out Lemma
• White’s Gap Theorem
• Brakke’s Regularity Theorem under Area Continuity and Unit Density Hypothesis

II. Partial Differential Equations

1. Sobolev Spaces
 • Holder and Sobolev spaces
 • Approximation
 • Extensions
 • Traces
 • Sobolev inequalities
 • Compactness

2. Laplace’s Equation
 • Fundamental Solution
 • Mean-Value Formulas
 • Properties of Harmonic Functions
 • Green’s Function
 • Energy Methods

3. Second-Order Elliptic Equations
 • Existence of Weak Solutions
 • Regularity
 • Maximum Principles
 • Eigenvalues and Eigenfunctions

4. Heat Equation
 • Fundamental Solution
 • Mean-Value Formula
 • Properties of Solutions
 • Energy Methods

5. Second-Order Parabolic Equations
 • Existence of Weak Solutions
 • Regularity
 • Maximum Principles
References

[Ec] Klaus Ecker, Regularity Theory for Mean Curvature Flow
[Ev] Lawrence C. Evans, Partial Differential Equations