Oral qualifying exam syllabus
Bence Borda

Committee: József Beck, Jeffry Kahn, Swastik Kopparty, Daniel Ocone

1. Combinatorics

Enumeration: double counting, pigeonhole principle, recurrence relations, generating functions, inclusion-exclusion, Stirling numbers

Hypergraphs: Sperner, LYM-inequality, Erdős–Ko–Rado, Kruskal–Katona, Fisher, Ray–Chaudhuri–Wilson, Baranyai, Beck–Fiala, projective geometries

Posets and lattices: Dilworth, graded, modular and distributive lattices, Birkhoff representation theorem, Möbius inversion

Ramsey-theory: Ramsey, Chvátal–Rödl–Szemerédi–Trotter, Van der Waerden and Szemerédi on arithmetic progressions

Infinite combinatorics: König-lemma, compactness

Inequalities: Harris, FKG, Ahlswede–Daykin, entropy, Shearer’s lemma

Algebraic methods: linear algebra methods, combinatorial nullstellensatz

2. Graph theory

Matchings: König, Hall, Tutte, algorithm for maximal matching

Colorings: Brooks, Vizing, 5 color theorem

Extremal graph theory: Turán, Erdős–Stone–Simonovits

Flow networks: max-flow min-cut, Ford–Fulkerson algorithm, Menger, applications

Algebraic methods: adjacency and incidence matrix, Cayley

Regularity lemma: statement of the regularity lemma, triangle removal lemma

3. The probabilistic method

Methods: union bound, Bonferroni inequalities, linearity of expectation, Markov and Chebyshev inequalities, Chernoff bound, alterations, Lovász local lemma, Janson inequality
Random graphs: monotone properties, existence of threshold functions, lower bound on Ramsey numbers, number of triangles in $G_{n,p}$, threshold function for containing a fixed subgraph, graphs with high chromatic number and high girth

4. Probability theory

Probability spaces: σ-algebras, independence, Kolmogorov zero-one law, Borel–Cantelli lemma
Random variables: independence, distribution, distribution function, density function, characteristic function, expected value and conditional expected value, variance, median
Inequalities: Markov, Chebychev, Chernoff, Lévy
Convergence of random variables: stochastic, with probability 1, in L_p, in distribution, uniform integrability
Laws of large numbers: weak and strong laws of large numbers, Feller, Kolmogorov
Central limit theorem: weak convergence of probability measures, continuity theorem of characteristic functions, central limit theorem, Lindeberg’s condition
Martingales: discrete time submartingales and supermartingales, stopping times, convergence of submartingales, upcrossing inequality, maximal inequality and Kolmogorov’s inequality for submartingales