Problem Set 4.

Let \mathcal{O} be an order in a number field K and define the conductor of the order \mathcal{O} to be the \mathcal{O}_K submodule of \mathcal{O} given by $c(\mathcal{O}) = \{x \in K | x\mathcal{O}_K \subset \mathcal{O}\}$. Note that $c(\mathcal{O})$ is the largest \mathcal{O}_K module contained in \mathcal{O}. We say a ideal I of \mathcal{O} is prime to an ideal J of \mathcal{O} if $I + J = \mathcal{O}$.

Problem 1 below establishes that:

1) Every ideal of \mathcal{O} prime to $c(\mathcal{O})$ is invertible and factors uniquely into a product of invertible primes of \mathcal{O}.
2) A prime ideal P in \mathcal{O} is invertible if and only if P is prime to $c(\mathcal{O})$.

1. i) Show that if $I \subset \mathcal{O}$ is an ideal with $I + c(\mathcal{O}) = \mathcal{O}$, then I is an invertible \mathcal{O} ideal which factors as a product of prime ideals. (Hint: Induct on the length of the \mathcal{O}-module \mathcal{O}/I, using that for any prime P containing I that $P^* = \{x \in K | xP \subset \mathcal{O}\}$ contains elements not in \mathcal{O}. Show that such a prime P is invertible by examining $P^* = P^*(P + c(\mathcal{O}))$, noting that if $P^*P = P$ then P^* is in \mathcal{O}_K.)

ii) For any prime P of \mathcal{O} let \mathcal{O}_P be the subring of K given by expressions r/s for $r \in \mathcal{O}$ and $s \notin P$. Show that there is a unique maximal ideal $P\mathcal{O}_P$ in \mathcal{O}_P. Show that if I is an invertible ideal in \mathcal{O} then $I\mathcal{O}_P$ is a principal ideal in \mathcal{O}_P. Hint: Write $1 \in I I^{-1}$ as a sum of elements in \mathcal{O} of the form x_iy_i, $x_i \in I$, $y_i \in I^{-1}$. Some summand is not in P, say x_1y_1. Show that $I\mathcal{O}_P = x_1\mathcal{O}_P$.

iii) Show that the prime ideals P in \mathcal{O} which contain $c(\mathcal{O})$ are not invertible \mathcal{O}-ideals. (Hint: Show that if P is invertible in \mathcal{O} then any ideal of \mathcal{O}_P is of the form $(P\mathcal{O}_P)^k$ and is invertible. Use this to show that $\mathcal{O}_K \subset \mathcal{O}_P$ and consider the members of an integer basis for \mathcal{O}_K to construct an element of $c(\mathcal{O})$ which is not in P when P is invertible).

2. Let K be a number field and p a prime number. Consider the order $\mathcal{O} = \mathbb{Z} + p\mathcal{O}_K$. Show that $P = p\mathcal{O}_K$ is a noninvertible prime ideal of \mathcal{O}. Show that the ideal $p\mathcal{O}$ of the order \mathcal{O} does not factor as a product of prime ideals of \mathcal{O}.

3. (Chinese Remainder Theorem) Let R be a commutative ring and let A_1, \ldots, A_n be ideals of R such that $A_i + A_j = R$ when $i \neq j$. Show that given x_1, \ldots, x_n in R, there exists x in R such that $x - x_i \in A_i$.

4. a) Suppose that R is an integral domain in which all prime ideals are maximal and every ideal is equal to a product of powers of prime ideals. If R has finitely many
prime ideals, use (3.) to show that R is a principal ideal domain. Give an example of such an R which is not a field.

b) Use part a) to show that given an ideal I of the maximal order O_K of a number field and an nonzero element $a \in I$ there exists an element $b \in I$ such that $I = aO_K + bO_K$.