23. Let R be a ring (the integers will be a good example), and let F be the field of fractions of R. Suppose $p(x)$ is an irreducible monic polynomial with coefficients in R. We want to find the ideals in the ring $R[x]/(p(x))$.

The correspondence theorem says that the ideals of this ring can be identified with ideals of $R[x]$ that contain $(p(x))$. Since $p(x)$ is irreducible, each ideal that properly contains $(p(x))$ also contains an element of R.

Instead of trying to describe all ideals at the same time, we try to find the maximal ideals. Certainly, the elements of R that lie in an ideal of $R[x]$ form an ideal of R, so we look at ideal that contain some fixed maximal ideal M of R. An ideal of $R[x]$ containing M contains all multiples of elements of M with elements of $R[x]$. Another description of this set is the set of all polynomials, all of whose coefficients lie in M. Check that this is an ideal.

Again, by the correspondence theorem, the ideals of $R[x]$ containing $M \cdot R[x]$ are the ideals of the factor ring. This factor ring can be shown to be $(R/M)[x]$.

The maximal ideal here are found by factoring $p(x)$ into irreducibles over R/M.

Workshop 11, Ideals and isomorphism theorems.