Some exercises from Section 2.6. Exercises 2 thru 5 will be done on the blackboard.

Homomorphism theorems. If \(\phi : G \to G' \) is a homomorphism, the image of \(G \), i.e.,

\[
G^* = \{ g' \in G' : (\exists g \in G) \phi(g) = g' \}
\]

= \{ \phi(g) : g \in G \}

is a subgroup of \(G' \), so \(\phi \) splits into a map onto \(G^* \) followed by the inclusion of \(G^* \) in \(G' \). Inclusions of subgroups seem almost too trivial to mention, so the mapping onto \(G^* \) gets most of the attention.

The kernel \(K \) of this mapping is the same as the kernel of \(\phi \) since the identity of the subgroup \(G^* \) is the identity element of \(G' \). The factor group construction leads to another group \(G/K \) with a homomorphism from \(G \) to \(G/K \) having \(K \) as kernel. The First homomorphism theorem says that \(G/K \) is isomorphic to \(G^* \) (and hence acts like a subgroup of \(G' \)) and this isomorphism is consistent with the homomorphisms we have from \(G \) to each of these groups.

The next result mentioned in this section is the Correspondence theorem that characterizes the sets

\[
H = \{ a \in G : \phi(a) \in H' \},
\]

where \(H' \) is a subgroup of \(G' \), as the subgroups of \(G \) that contain \(K \). Since \(K \) is a normal subgroup of \(H \), we can form \(K/H \). The theorem also relates \(H/K \) to \(H' \). If \(H' \) is a normal subgroup of \(G', H \) will also be a normal subgroup of \(G \).

The Second Homomorphism Theorem starts with an arbitrary subgroup \(H \) of \(G \) and considers its image in \(G/N \) for some \(N \triangleleft G \). The image of \(H \) is \(H/H \cap N \), and the correspondence theorem shows that this is isomorphic to the quotient of a group containing \(N \), which turns out to be \(HN \) by \(N \). This gives

\[
\frac{H}{H \cap N} \cong \frac{HN}{N}. \quad (\text{II})
\]

Finally, there is a Third Isomorphism Theorem that looks at the factor group of \(G' \) by a normal subgroup \(N' \) and relates it to \(G/N \) where

\[
N = \{ a \in G : \phi(a) \in N' \}.
\]
Proofs of these theorems, as well as exercises 2 and 6, will be done at the blackboard. This means that exercise 5 should be removed from the list of homework problems.

Section 2.8, along with its homework, will also be skipped at this time.