1 List all the Euclidean domains that you know, specifying the \(\delta \) for each.

2 For which of the following properties is it true that if a ring \(R \) has the property, then the polynomial ring \(R[X] \) has that property?
 (a) \(R \) is commutative
 (b) \(R \) is not commutative
 (c) \(R \) is an integral domain
 (d) \(R \) is a field
 (e) \(R \) is a division ring
 (f) \(R \) is a PID
 (g) \(R \) is a Euclidean domain.

3 For which of the above properties is it true that if \(R \) and \(S \) are rings having the property, then \(R \times S \) has the property?

4 For which of the following properties is it true that if a ring \(R \) has the property and \(I \) is any ideal of \(R \) such that \(I \neq R \), then the quotient ring \(R/I \) has the property?
 (a) \(R \) is commutative
 (b) \(R \) is an integral domain
 (c) \(R \) is a field
 (d) Every ideal in \(R \) is principal.

5 Let \(R = \mathbb{Z}[X] \). Show that \(R/3R \cong \mathbb{Z}_3[X] \).

6 Let \(R = \mathbb{Z}_5[X] \) and \(I = (X^2) \). Let \(S = R/I \).
 (a) How many elements are there in \(S \)?
 (b) How many units are there in \(S \)?
 (c) How many zero-divisors are there in \(S \)?
 (d) True or false: every zero-divisor in \(S \) is nilpotent.
 (e) How many ideals are there in \(S \)?

7 Prove that \(\mathbb{Z}[i] \cong \mathbb{Z}[X]/(X^2 + 1) \).

8 Suppose that \(\phi : R \to S \) is a homomorphism of rings. Let \(I \) be any ideal of \(R \) such that \(I \subseteq \ker(\phi) \). Construct a ring homomorphism \(\overline{\phi} : R/I \to S \) such that \(\operatorname{im}(\overline{\phi}) = \operatorname{im}(\phi) \).

9 What is the result \(a = qb + r \) when the division algorithm in \(\mathbb{Z}[i] \) is applied with \(a = 12 + 8i \) and \(b = 4 + 7i \)? (Hint. Check the proof that \(\mathbb{Z}[i] \) is Euclidean.)

10 Add the appropriate hypothesis and prove the resulting statement.
 If \(R \) is a ring, ________________, and if \(a, b \) are nonzero elements of \(R \) such that \(a \mid b \) and \(b \mid a \), then there is \(u \in U(R) \) such that \(b = ua \).

11 Show that if \(R \) is a ring and \(\phi : R \to R \) is a ring homomorphism, then \(S := \{ r \in R \mid \phi(r) = r \} \) is a subring of \(R \). If \(R \) is a field, then is \(S \) necessarily a field?

12 Suppose that \(R \) is a PID, and let \(a, b \in R \).
(a) Does there necessarily exist a gcd d of a and b in R? (What does this terminology mean, by definition?)
(b) If d exists, in what sense (if any) is it unique?
(c) If d exists, can d be expressed as an R-linear combination of a and b?
(d) Suppose that $S = R[X]$, or more generally suppose that R is a subring of another integral domain S (not necessarily a PID). Show that d is a gcd of a and b in S. Your answer to (c) should be used somewhere.

13 Let D_5 be the symmetry group of a regular pentagon. How many cyclic subgroups does D_5 have? How many noncyclic subgroups?

14 True or false: If G is a group, then the following cancellation law holds: for any $g, h, x \in G$, $gx = hx$ implies $g = h$.

15 Let G be a group. Show that G is abelian if and only if the mapping $\phi : G \to G$ defined by $\phi(g) = g^2$ is a homomorphism.

16 Let G be a group and $x, y \in G$. Show that if $xy = yx$, then $xy^{-1} = y^{-1}x$.

17 Proof or counterexample: If G is a group, $x, y \in G$, $n \in \mathbb{N}$, and x and y have order n, then $(xy)^n = 1$.

18 Suppose that G is a finite group, and H and K are distinct subgroups of G such that $|H| = |K|$. Show that $H \cup K$ is not a subgroup of G, but $H \cap K$ is a subgroup of G.