Your first midterm examination is likely to contain some problems that do not resemble these review problems.

I. Applications of Integration

(1-3) Find the volumes of the solids obtained by rotating the indicated region \(\mathcal{R} \) in the \(xy \)-plane about the specified axis:

1. Region: \(\mathcal{R} \) is bounded by \(y = 1, \ y = \ln x \) and \(x = e^2 \).
 - Axes: (a) the line \(y = -1 \); (b) the line \(x = -2 \).

2. Region: \(\mathcal{R} \) consists of all points \((x, y)\) with \(0 \leq x \leq \pi\) and \(0 \leq y \leq \sin x\).
 - Axes: (2a) the line \(y = -2 \); (2b) the line \(x = -1 \).

3. Region: \(\mathcal{R} \) is bounded by \(x = y(4 - y) \) and the \(y \)-axis
 - Axis: the \(y \)-axis.

4. Write down the integral used to compute the work done against gravity in building a granite pyramid 500 feet high with a square base of side length 800 feet. Take the density of granite as 170 lbs per cubic foot. Explain in detail how the integral is obtained.

5. There is a point \(x_0 \) in the interval \([5,7]\) where the function \(f(x) = (x^2 - 4)^{-1/2} \) takes on its average value over that interval.
 - (a) How do we know that? (b) Find such a point \(x_0 \).

II. Numerical Methods

(6) How many subintervals of \([0,2]\) should we use to ensure an accuracy within \(10^{-6}\) when we approximate \(\int_{0}^{2} 4x^3 - x^4 \, dx \) using:
 - (a) the Midpoint Rule?; (b) Simpson’s Rule?

(7) A certain integral \(\int_{1}^{4} f(x) \, dx \) is approximated by the Trapezoidal Rule using 30 intervals, and the approximation found is 3.14286. The graph of \(f''(x) \) is shown here. Find a range of values \([a,b]\) such that the exact value of the integral can be guaranteed to lie within that range, and explain your method. (The numbers \(a \) and \(b \) should be given to at most 3 decimal places accuracy.)

Figure 1: \(f'' \)
III. Techniques of Integration

(8) Evaluate the following integrals.

(a) \(\int \sin^3 x \cos^4 x \, dx \) (b) \(\int \sec^4 x \, dx \)

(c) \(\int \tan^5 x \sec^3 x \, dx \) (d) \(\int \sec^3 x \, dx \)

(9) Evaluate the following integrals. Integral (g) is very difficult unless you are given the following hint: The function \(\frac{1}{1+e^x} - \frac{1}{2} \) is an odd function.

(a) \(\int x^5 (\ln x)^2 \, dx \) (b) \(\int \frac{dx}{x \ln x} \) (c) \(\int \cos (\sqrt{x}) \, dx \)

(d) \(\int x^2 \tan^{-1} x \, dx \) (e) \(\int x^{-2} \sin^{-1} x \, dx \) (f) \(\int e^{\sqrt{x}} \, dx \)

(g) \(\int_{\pi/2}^{\pi/2} \frac{\cos(x)}{1 + e^x} \, dx \)

(10) Evaluate the following integrals.

(a) \(\int \frac{dx}{(25 + x^2)^2} \) (b) \(\int \frac{x \, dx}{(x^2 + 36)(x + 1)} \) (c) \(\int \frac{dx}{\sqrt{2x - x^2}} \)

(d) \(\int \frac{x \, dx}{(x - 5)(x + 3)^2} \) (e) \(\int \frac{x^2 \, dx}{(16 - x^2)^{3/2}} \) (f) \(\int \frac{dx}{x^2 + 4x + 9} \)

(11) Evaluate \(\int \sin(\ln x) \, dx \) using two integrations by parts. Would another method work?