\[
\sin(0) = 0; \quad \sin(\pi/6) = 1/2; \quad \sin(\pi/4) = \sqrt{2}/2; \quad \sin(\pi/3) = \sqrt{3}/2; \quad \sin(\pi/2) = 1
\]
\[
\cos(0) = 1; \quad \cos(\pi/6) = \sqrt{3}/2; \quad \cos(\pi/4) = \sqrt{2}/2; \quad \cos(\pi/3) = 1/2; \quad \cos(\pi/2) = 0
\]
\[
\cos^2 x + \sin^2 x = 1; \quad 1 + \tan^2 x = \sec^2 x; \quad 1 + \cot^2 x = \csc^2 x
\]
\[
\sin(2x) = 2 \sin x \cos x; \quad \cos(2x) = \cos^2 x - \sin^2 x
\]
\[
\cos^2 x = \frac{1}{2}(1 + \cos(2x)); \quad \sin^2 x = \frac{1}{2}(1 - \cos(2x))
\]
\[
\sin A \cos B = \frac{1}{2} \sin(A - B) + \sin(A + B)
\]
\[
\sin A \sin B = \frac{1}{2} \cos(A - B) - \cos(A + B)
\]
\[
\cos A \cos B = \frac{1}{2} \cos(A - B) + \cos(A + B)
\]
\[
\int \sec x \, dx = \ln |\sec x + \tan x| + C; \quad \int \csc x \, dx = -\ln |\csc x + \cot x| + C
\]

If \(T_N, M_N, S_N \) are the Trapezoidal, Midpoint and Simpson’s approximations, then
\[
T_N = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \cdots + 2f(x_{N-2}) + f(x_{N-1}) + f(x_N) \right];
\]
\[
M_N = \Delta x \left[f(c_1) + f(c_2) + \cdots + f(c_N) \right] \text{ where } c_j = (x_{j-1} + x_j)/2;
\]
\[
S_N = \frac{\Delta x}{3} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \cdots + 2f(x_{N-2}) + 4f(x_{N-1}) + f(x_N) \right].
\]

If \(I = \int_a^b f(x) \, dx \) then
\[
|T_N - I| \leq \frac{K_2(b - a)^3}{12N^2}, \quad |M_N - I| \leq \frac{K_2(b - a)^3}{24N^2}, \quad |S_N - I| \leq \frac{K_4(b - a)^5}{180N^4}.
\]

The length of the curve \(y = f(x), a \leq x \leq b \) is equal to \(\int_a^b \sqrt{1 + (f'(x))^2} \, dx \).
The area of the surface obtained by rotating the curve \(y = f(x), a \leq x \leq b \) about the \(x \)-axis is equal to \(\int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx \).
The length of the parametric curve \((x(t), y(t)), a \leq t \leq b \) equals \(\int_a^b \sqrt{(x'(t))^2 + (y'(t))^2} \, dt \).
If a curve is given in polar form by \(r = f(\theta) \) then the area bounded by \(r = f(\theta), \theta = \alpha \) and \(\theta = \beta \) is \(\int_\alpha^\beta \frac{1}{2} r^2 \, d\theta = \int_\alpha^\beta \frac{1}{2} (f(\theta))^2 \, d\theta \).

Newton’s Law of Cooling is given by \(\frac{dT}{dt} = -k(T - T_0) \), where \(T \) is the temperature and \(T_0 \) is the ambient temperature. The balance \(P \) in an annuity is given by \(\frac{dP}{dt} = r(P - N/r) \), where \(r \) is the interest rate and \(N \) is the rate of withdrawal.

The \(n \)th Taylor polynomial of \(f(x) \) with center \(a \) is \(T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k \).

If \(|f^{(n+1)}(u)| \leq K \) for all \(u \) between \(a \) and \(x \), then \(|f(x) - T_n(x)| \leq K \frac{|x-a|^{n+1}}{(n+1)!} \).

\[
(1 + x)^a = 1 + ax + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \cdots \quad \text{if} \quad |x| < 1
\]