Woodward, Christopher |
L | 02403 | 640 | 350 | 02 | MW5 | 0320 P - 0440 | SEC: 206 |
BUS |

- This course is a proof-based continuation of Math 250, covering Abstract vector spaces and linear transformations, inner product spaces, diagonalization, and canonical forms.

*Prerequisites: *

- CALC4, Math 250 and Math 300

Text: *Linear Algebra* (4th ed.), by Friedberg, Insel and Spence,

Prentice Hall, 2003 ISBN 0-13-008451-4.

- Lectures MW5 (3:20-4:40PM) in
**SEC: 206** - Office Hours: Wednesday 2-3pm, Hill 726
- Contact Information: e-mail ctw@math.rutgers.edu

The course is strongly based on Math 250. However, we'll work axiomatically, starting from the abstract notions of vector space and of linear transformation. Much of the homework and many of the exam and quiz problems will require you to write precise proofs, building on your proof-writing experience in Math 300. From this more abstract viewpoint, we'll be developing linear algebra far beyond Math 250, with new insight and new applications.

Class attendance is very important. A lot of what we do in class will involve collective participation. We will cover the topics indicated in the syllabus below, but the dates that we cover some of the topics might be adjusted during the semester, depending on class discussion, etc. Such adjustments, along with the almost-weekly homework assignments, will be announced in class and also posted on this webpage, so be sure to check this webpage regularly. Absences from a single class due to minor illnesses should be self-reported using the university system; for longer absences, students should email me with the situation. I reserve the right to lower the course grade up to one full letter grade for poor attendance.

Make-ups for exams are generally not given; if a student has an extremely good reason (e.g. documented medical emergency) I may re-arrange the grading scheme to accomodate.

Problem sets are due on most Wednesdays. There are no problems due on the two midterm-exam Wednesdays.

Note that we will cover significant material from all the chapters in the book, Chapters 1-7, but we will cover Chapter 7 before Chapter 6. This is because the material in Chapter 7 is a natural continuation of the material in Chapter 5 on the theory of eigenvalues, eigenvectors and diagonalizability. Chapter 6 also concerns eigenvalues, eigenvectors and diagonalizability, but this time, based on a generalization of the theory of dot products.

Quizzes will be given at the ends of a few class sessions. The dates of these quizzes, and the topics covered, will be announced in advance.

Grading policy: First midterm exam: 100 points; Second midterm exam: 100 points; Homework and quizzes: 100 points; Final exam: 200 points (Total: 500 points).

#### Tentative Course Syllabus

Week | Lecture dates | Sections | topics |
---|---|---|---|

1 | 9/6 (W) | Chapter 1 | Abstract vector spaces & subspaces |

2 | 9/11, 9/13 | Chapter 1 | Span of subsets, linear independence |

3 | 9/18, 9/20 | Chapter 1 | Bases and dimension |

4 | 9/25, 9/27 | Chapter 2 | Linear transformations |

5 | 10/2, 10/4 | Chapter 2 | Change of basis, dual spaces |

6 | 10/9, 10/11 | Ch. 1-2 | Review and Exam 1 (10/11) |

7 | 10/16, 10/18 | Chapter 3 | Rank and Systems of Linear Equations |

8 | 10/23, 10/25 | Chapter 4 | Determinants and their properties |

9 | 10/30, 11/1 | Chapter 5 | Eigenvalues/eigenvectors |

10 | 11/6, 11/8 | Chapter 5 | Cayley-Hamilton |

11 | 11/13, 11/15 | Chapter 7 | Jordan Canonical Form |

12 | 11/20 | Chapter 7 | Rational Canonical Form |

13 | 11/27, 11/29 | Ch.3,4,5,7 | Review and Exam 2 (11/29) |

14 | 12/4, 12/6 | Chapter 6 | Inner Product spaces |

15 | 12/11, 12/13 | Chapter 6 | Unitary and Orthogonal operators (last class) |

17 | 12/22 (Friday) | 12-3 PM | Final Exam |

#### Exam Dates

The exam dates are listed in the schedule above. Any conflict (such as with a religious holiday) should be reported to me at the beginning of the semester, so that the exam may be re-scheduled.

### Special Accommodations

Students with disabilities requesting accommodations must follow the procedures outlined at https://ods.rutgers.edu/students/applying-for-services

### Academic Integrity

All Rutgers students are expected to be familiar with and abide by the academic integrity policy. Violations of the policy are taken very seriously. In particular, your work should be your own; you are responsible for properly crediting all help with the solution.

#### First Problem Set

If the type-setting below looks strange, open this file in pdf.

(1) Find the space of polynomials \(f(x) = \{ ax^2 + bx + c \}\) satisfying \(f(-1) = -1, f'(-1) = -1\).

(2) Show that the set of functions \(f: S \to \mathbb{R}\) from a set \(S\) to the real numbers \(\mathbb{R}\) with addition given by \((f + g)(x) = f(x) + g(x)\) and scalar multiplication given by \((cf)(x) = c(f(x))\) satisfies axiom (VS4) in the axioms for a vector space.

(3) Show that the set of polynomials in a single real variable with addition given by \((f + g)(x) = f(x) + g(x)\) and scalar multiplication \((cf)(x) = f(cx)\) is not a vector space.

(4) Show that if \(V\) is a vector space and \(v \in V\) and \(c \in F\) are such that \(cv = 0\) then either \(c = 0\) or \(v = 0\). [Hint: argue by cases or by contradiction.]

(5) Prove that \( \{ (1,1,0), (1,0,1), (0,1,1) \}\) is linearly independent over \(\mathbb{R}\) but linearly dependent over \(\mathbb{Z}_2\).

#### Second Problem Set

(Open this file in pdf if necessary.)

(1) Prove that a nonempty subset \(W\) of a vector space \(V\) is a subspace of a vector space \(V\) iff \(\operatorname{span}(W) = W\).

(2) Prove that the polynomials \(1, x, x^2\) are linearly independent in the space of functions from \(\mathbb{R}\) to \(\mathbb{R}\).

(3) Find a basis for the space of real polynomials \(\{ f(x) = ax^3 + bx^2 + cx + d \ | \ f(1) = 0 \}\).

(4) Find a basis for the vector space of real polynomials of arbitrary degree, and prove that your answer is a basis. [Warning: linear independence is a bit tricky.] Show that this space is infinite dimensional.

(5) Show that if \(W\) is a subspace of a vector space \(V\) and \(\dim(W) = \dim(V)\) then \(V = W\).

(6) Find a basis for the space of real skew-symmetric matrices of size \(n\). What is the dimension of the space?

#### Recommended Practice Problems (the problem sets from last year)

Sept. 13 | 1.2 #17; 1.3 #19,23; 1.4 #11,13; 1.5 #9,15 |

Sept. 20 | 1.6 # 20,21,26,29; 1.7 #5,6 |

Sept. 27 | 2.1 #3,11,28; 2.2 #4; 2.3 #12; 2.4 #15,17 |

October 4 | 2.5 #3(d),7(a,b),13; 2.6 #5,10; Show that F[x]* ≅ F[[x]]. |

October 18 | 3.1 #6,12; 3.2 #5(b,d,h),17; 3.3 #8,10; 3.4 #8,15 If an nxn matrix A has each row sum 0, some Ax=b has no solution. |

October 25 | 4.1 #10(a,c); 4.2 #23; 4.3 #12,22(c),25(c); 4.4 #6; 4.5 #11,12 |

Nov. 1 | 5.1 #3(b),20,21; 5.2 #4,9(a),12; Show that the cross product induces an isomorphism between R³ and Λ²(R³). |

Nov. 8 | 5.2 #18(a),21; 5.3 #2(d,f); 5.4 #6(a),13,19,25 |

Nov. 15 | 7.1 #3(b),9(a),13; 7.2 #3,14,19(a); 7.3 #13,14; Find all 4x4 Jordan canonical forms of T satisfying T²=T³. |

Dec. 13 | 6.1; #6,11,12,17; 6.2 #2a,6,11; 6.8 #4(a,c,d),11 |