7. Approximation of Derivatives

Basic idea: replace the function by its interpolating polynomial and use the derivative of the interpolating polynomial as an approximation to the derivative of the function.
7.1. Numerical Differentiation Formulas. Let $P_{n}(x)$ be the unique polynomial of degree $\leq n$ interpolating f at x_{0}, \ldots, x_{n}. Then $f(x)-P_{n}(x)=f\left[x_{0}, \ldots x_{n}, x\right] \psi_{n}(x)$, where $\psi_{n}(x)=$ $\prod_{j=0}^{n}\left(x-x_{j}\right)$. If we approximate $f^{\prime}(x)$ by $P_{n}^{\prime}(x)$, then the error

$$
f^{\prime}(x)-P_{n}^{\prime}(x)=\left\{(d / d x) f\left[x_{0}, \ldots, x_{n}, x\right]\right\} \psi_{n}(x)+f\left[x_{0}, \ldots, x_{n}, x\right] \psi_{n}^{\prime}(x)
$$

Now suppose that $f \in C^{n+2}$. Then

$$
(d / d x) f\left[x_{0}, \ldots, x_{n}, x\right]=\lim _{h \rightarrow 0} \frac{f\left[x_{0}, \ldots, x_{n}, x+h\right]-f\left[x_{0}, \ldots, x_{n}, x\right]}{h} .
$$

But

$$
\begin{aligned}
f\left[x_{0}, \ldots, x_{n}, x, x+h\right] & =f\left[x, x_{0}, \ldots, x_{n}, x+h\right] \\
& =(1 / h)\left\{f\left[x_{0}, \ldots, x_{n}, x+h\right]-f\left[x, x_{0}, \ldots, x_{n}\right]\right\} \\
& =(1 / h)\left\{f\left[x_{0}, \ldots, x_{n}, x+h\right]-f\left[x_{0}, \ldots, x_{n}, x\right]\right\} .
\end{aligned}
$$

Hence,

$$
(d / d x) f\left[x_{0}, \ldots, x_{n}, x\right]=\lim _{h \rightarrow 0} f\left[x_{0}, \ldots, x_{n}, x, x+h\right]=f\left[x_{0}, \ldots, x_{n}, x, x\right] .
$$

Thus the error formula becomes:

$$
\begin{aligned}
f^{\prime}(x)-P_{n}^{\prime}(x) & =f\left[x_{0}, \ldots, x_{n}, x, x\right] \psi_{n}(x)+f\left[x_{0}, \ldots, x_{n}, x\right] \psi_{n}^{\prime}(x) \\
& =f^{(n+2)}\left(\xi_{x}\right) \psi_{n}(x) /(n+2)!+f^{(n+1)}\left(\eta_{x}\right) \psi_{n}^{\prime}(x) /(n+1)!
\end{aligned}
$$

for some $\xi_{x}, \eta_{x} \in(a, b)$.
Next consider a special case when the error formula can be simplified: x is one of the interpolation points x_{i}. Then $\psi_{n}\left(x_{i}\right)=0$ and so

$$
f^{\prime}\left(x_{i}\right)-P_{n}^{\prime}\left(x_{i}\right)=f\left[x_{0}, \ldots, x_{n}, x_{i}\right] \psi_{n}^{\prime}\left(x_{i}\right)=f^{(n+1)}\left(\eta_{x}\right) \psi_{n}^{\prime}\left(x_{i}\right) /(n+1)!
$$

Writing $\psi(x)=\left(x-x_{i}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x-x_{j}\right)$, we see that $\psi_{n}^{\prime}\left(x_{i}\right)=\prod_{\substack{j \neq 0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)$ and so

$$
f^{\prime}\left(x_{i}\right)-P_{n}^{\prime}\left(x_{i}\right)=f\left[x_{0}, \ldots, x_{n}, x_{i}\right] \prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)=f^{(n+1)}\left(\eta_{x}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right) /(n+1)!.
$$

Examples:

$$
n=1:
$$

$$
P_{1}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right) . \text { Hence, } P_{1}^{\prime}(x)=f\left[x_{0}, x_{1}\right] \text { for all } x \text {. Then }
$$

$$
f^{\prime}\left(x_{0}\right)-P_{1}^{\prime}\left(x_{0}\right)=-h f^{(2)}\left(\eta_{x}\right) / 2, \quad f^{\prime}\left(x_{1}\right)-P_{1}^{\prime}\left(x_{1}\right)=h f^{(2)}\left(\eta_{x}\right) / 2
$$

where $h=x_{1}-x_{0}$.
$n=2:$
$P_{2}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)+f\left[x_{0}, x_{1}, x_{2}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)$. Hence, $P_{2}^{\prime}(x)=f\left[x_{0}, x_{1}\right]+$ $f\left[x_{0}, x_{1}, x_{2}\right]\left(2 x-x_{0}-x_{1}\right)$. When $x=x_{1}$, and the points are equally spaced with $x_{i+1}-x_{i}=h$, we get:

$$
\begin{aligned}
P_{2}^{\prime}\left(x_{1}\right) & =f\left[x_{0}, x_{1}\right]+f\left[x_{0}, x_{1}, x_{2}\right]\left(x_{1}-x_{0}\right) \\
& =f\left[x_{0}, x_{1}\right]+\left(f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]\right) \frac{x_{1}-x_{0}}{x_{2}-x_{0}} \\
& \left.=\left(f\left[x_{1}, x_{2}\right]+f\left[x_{0}, x_{1}\right]\right) / 2=\left[f\left(x_{2}\right)-f\left(x_{0}\right)\right]\right) /(2 h)=f\left[x_{0}, x_{2}\right]
\end{aligned}
$$

The error is given by: $f^{\prime}\left(x_{i}\right)-P_{n}^{\prime}\left(x_{i}\right)=f^{(n+1)}\left(\eta_{x}\right) \prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right) /(n+1)$! and so

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right)-P_{2}^{\prime}\left(x_{0}\right) & =f^{(3)}\left(\eta_{x}\right)\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) / 6 \\
f^{\prime}\left(x_{1}\right)-P_{2}^{\prime}\left(x_{1}\right) & =f^{(3)}\left(\eta_{x}\right)\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) / 6 \\
f^{\prime}\left(x_{2}\right)-P_{2}^{\prime}\left(x_{2}\right) & =f^{(3)}\left(\eta_{x}\right)\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) / 6
\end{aligned}
$$

If the points are equally spaced with $x_{i+1}-x_{i}=h$, then

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)-P_{2}^{\prime}\left(x_{0}\right)=h^{2} f^{(3)}\left(\eta_{x}\right) / 3, \\
& f^{\prime}\left(x_{1}\right)-P_{2}^{\prime}\left(x_{1}\right)=-h^{2} f^{(3)}\left(\eta_{x}\right) / 6, \\
& f^{\prime}\left(x_{2}\right)-P_{2}^{\prime}\left(x_{2}\right)=h^{2} f^{(3)}\left(\eta_{x}\right) / 3
\end{aligned}
$$

Note that the error formula says that the divided difference $f\left[x_{0}, x_{2}\right]$ approximates $f^{\prime}\left(x_{1}\right)$ with error $-h^{2} f^{(3)}\left(\eta_{x}\right) / 6$. On the other hand, using the Taylor series expansion $f\left(x_{2}\right)=$ $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{2}-x_{0}\right)+f^{\prime \prime}(\xi)\left(x_{2}-x_{0}\right)^{2} / 2$, we get

$$
f\left[x_{0}, x_{2}\right]-f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{2}\right)-f\left(x_{0}\right)}{x_{2}-x_{0}}-f^{\prime}\left(x_{0}\right)=f^{\prime \prime}(\xi)\left(x_{2}-x_{0}\right) / 2=h f^{\prime \prime}(\xi)
$$

Using a Taylor expansion about x_{2}, we get $f\left[x_{0}, x_{2}\right]-f^{\prime}\left(x_{2}\right)=-h f^{\prime \prime}(\xi)$. Hence, $f\left[x_{0}, x_{2}\right]$ gives a higher order approximation to f^{\prime} at the midpoint of the interval than at the two end points.

We also obtain formulas for approximating higher derivatives in a similar way.
Example: $n=2$. $P_{2}^{\prime \prime}(x)=2 f\left[x_{0}, x_{1}, x_{2}\right]$. Consider the case of equally spaced points: $x_{0}=a-h, x_{1}=a, x_{2}=a+h$. Then $P_{2}^{\prime \prime}(x)=[f(a+h)-2 f(a)+f(a+h)] / h^{2}$. In this case, we can easily derive an error formula for $f^{\prime \prime}(a)-P_{2}^{\prime \prime}(a)$ by using Taylor series expansions.

$$
f(a \pm h)=f(a) \pm f^{\prime}(a) h+f^{\prime \prime}(a) h^{2} / 2 \pm f^{(3)}(a) h^{2} / 6+f^{(4)}\left(\xi_{ \pm}\right) h^{4} / 4!
$$

Hence,
$[f(a+h)-2 f(a)+f(a+h)] / h^{2}=f^{\prime \prime}(a)+h^{2}\left[f^{(4)}\left(\xi_{+}\right)+f^{(4)}\left(\xi_{-}\right)\right] / 4!=f^{\prime \prime}(a)+h^{2} f^{(4)}(\xi) / 12$, and so

$$
f^{\prime \prime}(a)-[f(a+h)-2 f(a)+f(a+h)] / h^{2}=-h^{2} f^{(4)}(\xi) / 12 .
$$

This estimate uses symmetry to get cancellations in the error. The approximation would only be $O(h)$ at other points.
7.2. Roundoff Error in Numerical Differentiation. Consider the formula:

$$
f^{\prime}(a)=[f(a+h)-f(a-h)] /(2 h)-h^{2} f^{\prime \prime}(\xi) / 6
$$

This equation says that if $\left|f^{\prime \prime}(x)\right| \leq M_{2}$ for all $x \in[a-h, a+h]$, then the sequence $[f(a+$ $h)-f(a-h)] /(2 h)$ converges to $f^{\prime}(a)$ as $h \rightarrow 0$.

This assumes, however that the quantity $[f(a+h)-f(a-h)] /(2 h)$ is computed exactly. Because of roundoff errors, we will really be using the numbers $f(a+h)+E_{+}$and $f(a-h)+E_{-}$ in the calculations. Then
$f_{\text {comp }}^{\prime}(a)=\left[f(a+h)+E_{+}-f(a-h)-E_{-}\right] /(2 h)=[f(a+h)-f(a-h)] /(2 h)+\left[E_{+}-E_{-}\right] /(2 h)$.
So we really have

$$
f^{\prime}(a)-f_{c o m p}^{\prime}(a)=-h^{2} f^{\prime \prime}(\xi) / 6-\left[E_{+}-E_{-}\right] /(2 h)
$$

Thus the error consists of two parts, the discretization error (arising from approximating the derivative by a divided difference) and the roundoff error. As $h \rightarrow 0$, the discretization error $\rightarrow 0$. But if $E_{+}-E_{-} \neq 0$, then $\left[E_{+}-E_{-}\right] /(2 h) \rightarrow \infty$. So, one must be careful not to take h so small that the roundoff error becomes the dominant error in the computation.
7.3. Numerical Differentiation using piecewise polynomials. Just as piecewise polynomials offer a better way to approximate functions than using high degree polynomials, derivatives of piecewise polynomials offer an better alternative to approximate derivatives of functions.

Example: Using, C^{0} piecewise linear functions, we could approximate $f^{\prime}(x)$ on the subinterval $\left(x_{i-1}, x_{i}\right)$ by the derivative of the interpolant, i.e., by $\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right] /\left(x_{i}-x_{i-1}\right)$. This approximation is defined everywhere except at the mesh points.

To obtain approximation to higher derivatives, we must start with a smoother piecewise polynomial. The space of C^{1} piecewise cubics can be used to get approximations to $f^{\prime}(x)$ everywhere and to $f^{\prime \prime}(x)$ everywhere except at the mesh points. The space of cubic splines will give approximations to $f^{\prime \prime}(x)$ everywhere and to $f^{(3)}(x)$ everywhere except at the mesh points.

