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7. Approximation of Derivatives

Basic idea: replace the function by its interpolating polynomial and use the derivative of
the interpolating polynomial as an approximation to the derivative of the function.

7.1. Numerical Differentiation Formulas. Let Pn(x) be the unique polynomial of degree
≤ n interpolating f at x0, . . . , xn. Then f(x)−Pn(x) = f [x0, . . . xn, x]ψn(x), where ψn(x) =∏n

j=0(x− xj). If we approximate f ′(x) by P ′

n(x), then the error

f ′(x)− P ′

n(x) = {(d/dx)f [x0, . . . , xn, x]}ψn(x) + f [x0, . . . , xn, x]ψ
′

n(x).

Now suppose that f ∈ Cn+2. Then

(d/dx)f [x0, . . . , xn, x] = lim
h→0

f [x0, . . . , xn, x+ h]− f [x0, . . . , xn, x]

h
.

But

f [x0, . . . , xn, x, x+ h] = f [x, x0, . . . , xn, x+ h]

= (1/h){f [x0, . . . , xn, x+ h]− f [x, x0, . . . , xn]}

= (1/h){f [x0, . . . , xn, x+ h]− f [x0, . . . , xn, x]}.

Hence,

(d/dx)f [x0, . . . , xn, x] = lim
h→0

f [x0, . . . , xn, x, x+ h] = f [x0, . . . , xn, x, x].

Thus the error formula becomes:

f ′(x)− P ′

n(x) = f [x0, . . . , xn, x, x]ψn(x) + f [x0, . . . , xn, x]ψ
′

n(x)

= f (n+2)(ξx)ψn(x)/(n+ 2)! + f (n+1)(ηx)ψ
′

n(x)/(n+ 1)!,

for some ξx, ηx ∈ (a, b).

Next consider a special case when the error formula can be simplified: x is one of the
interpolation points xi. Then ψn(xi) = 0 and so

f ′(xi)− P ′

n(xi) = f [x0, . . . , xn, xi]ψ
′

n(xi) = f (n+1)(ηx)ψ
′

n(xi)/(n+ 1)!.

Writing ψ(x) = (x− xi)
∏n

j=0

j 6=i

(x− xj), we see that ψ′

n(xi) =
∏n

j=0

j 6=i

(xi − xj) and so

f ′(xi)− P ′

n(xi) = f [x0, . . . , xn, xi]
n∏

j=0

j 6=i

(xi − xj) = f (n+1)(ηx)
n∏

j=0

j 6=i

(xi − xj)/(n+ 1)!.

Examples:

n = 1:

P1(x) = f(x0) + f [x0, x1](x− x0). Hence, P
′

1(x) = f [x0, x1] for all x. Then

f ′(x0)− P ′

1(x0) = −hf (2)(ηx)/2, f ′(x1)− P ′

1(x1) = hf (2)(ηx)/2,

where h = x1 − x0.
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n = 2:

P2(x) = f(x0)+f [x0, x1](x−x0)+f [x0, x1, x2](x−x0)(x−x1). Hence, P
′

2(x) = f [x0, x1]+
f [x0, x1, x2](2x−x0−x1). When x = x1, and the points are equally spaced with xi+1−xi = h,
we get:

P ′

2(x1) = f [x0, x1] + f [x0, x1, x2](x1 − x0)

= f [x0, x1] + (f [x1, x2]− f [x0, x1])
x1 − x0
x2 − x0

= (f [x1, x2] + f [x0, x1])/2 = [f(x2)− f(x0)])/(2h) = f [x0, x2].

The error is given by: f ′(xi)− P ′

n(xi) = f (n+1)(ηx)
∏n

j=0

j 6=i

(xi − xj)/(n+ 1)! and so

f ′(x0)− P ′

2(x0) = f (3)(ηx)(x0 − x1)(x0 − x2)/6,

f ′(x1)− P ′

2(x1) = f (3)(ηx)(x1 − x0)(x1 − x2)/6,

f ′(x2)− P ′

2(x2) = f (3)(ηx)(x2 − x0)(x2 − x1)/6.

If the points are equally spaced with xi+1 − xi = h, then

f ′(x0)− P ′

2(x0) = h2f (3)(ηx)/3,

f ′(x1)− P ′

2(x1) = −h2f (3)(ηx)/6,

f ′(x2)− P ′

2(x2) = h2f (3)(ηx)/3.

Note that the error formula says that the divided difference f [x0, x2] approximates f ′(x1)
with error −h2f (3)(ηx)/6. On the other hand, using the Taylor series expansion f(x2) =
f(x0) + f ′(x0)(x2 − x0) + f ′′(ξ)(x2 − x0)

2/2, we get

f [x0, x2]− f ′(x0) =
f(x2)− f(x0)

x2 − x0
− f ′(x0) = f ′′(ξ)(x2 − x0)/2 = hf ′′(ξ).

Using a Taylor expansion about x2, we get f [x0, x2] − f ′(x2) = −hf ′′(ξ). Hence, f [x0, x2]
gives a higher order approximation to f ′ at the midpoint of the interval than at the two end
points.

We also obtain formulas for approximating higher derivatives in a similar way.

Example: n = 2. P ′′

2 (x) = 2f [x0, x1, x2]. Consider the case of equally spaced points:
x0 = a− h, x1 = a, x2 = a+ h. Then P ′′

2 (x) = [f(a+ h)− 2f(a) + f(a+ h)]/h2. In this case,
we can easily derive an error formula for f ′′(a)− P ′′

2 (a) by using Taylor series expansions.

f(a± h) = f(a)± f ′(a)h+ f ′′(a)h2/2± f (3)(a)h2/6 + f (4)(ξ±)h
4/4!.

Hence,

[f(a+ h)− 2f(a) + f(a+ h)]/h2 = f ′′(a) + h2[f (4)(ξ+) + f (4)(ξ−)]/4! = f ′′(a) + h2f (4)(ξ)/12,

and so
f ′′(a)− [f(a+ h)− 2f(a) + f(a+ h)]/h2 = −h2f (4)(ξ)/12.

This estimate uses symmetry to get cancellations in the error. The approximation would
only be O(h) at other points.
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7.2. Roundoff Error in Numerical Differentiation. Consider the formula:

f ′(a) = [f(a+ h)− f(a− h)]/(2h)− h2f ′′(ξ)/6.

This equation says that if |f ′′(x)| ≤ M2 for all x ∈ [a − h, a + h], then the sequence [f(a +
h)− f(a− h)]/(2h) converges to f ′(a) as h→ 0.

This assumes, however that the quantity [f(a+ h)− f(a− h)]/(2h) is computed exactly.
Because of roundoff errors, we will really be using the numbers f(a+h)+E+ and f(a−h)+E−

in the calculations. Then

f ′

comp(a) = [f(a+h)+E+−f(a−h)−E−]/(2h) = [f(a+h)−f(a−h)]/(2h)+[E+−E−]/(2h).

So we really have

f ′(a)− f ′

comp(a) = −h2f ′′(ξ)/6− [E+ − E−]/(2h).

Thus the error consists of two parts, the discretization error (arising from approximating
the derivative by a divided difference) and the roundoff error. As h → 0, the discretization
error → 0. But if E+ − E− 6= 0, then [E+ − E−]/(2h) → ∞. So, one must be careful not to
take h so small that the roundoff error becomes the dominant error in the computation.

7.3. Numerical Differentiation using piecewise polynomials. Just as piecewise poly-
nomials offer a better way to approximate functions than using high degree polynomials,
derivatives of piecewise polynomials offer an better alternative to approximate derivatives of
functions.

Example: Using, C0 piecewise linear functions, we could approximate f ′(x) on the subin-
terval (xi−1, xi) by the derivative of the interpolant, i.e., by [f(xi) − f(xi−1)]/(xi − xi−1).
This approximation is defined everywhere except at the mesh points.

To obtain approximation to higher derivatives, we must start with a smoother piecewise
polynomial. The space of C1 piecewise cubics can be used to get approximations to f ′(x)
everywhere and to f ′′(x) everywhere except at the mesh points. The space of cubic splines
will give approximations to f ′′(x) everywhere and to f (3)(x) everywhere except at the mesh
points.


