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5. The Finite Fourier Transform

We consider the approximation of a periodic function f with period 2π, i.e., f(t + 2π) =
f(t). Note that a function with a more general period can be reduced to this case in the
following simple way. If g(t+ τ) = g(t), and we set f(t) = g(τt/(2π)), then

f(t+ 2π) = g(τ(t+ 2π)/(2π)) = g(τt/(2π) + τ) = g(τt/(2π)) = f(t).

5.1. Trignometric interpolation. We wish to approximate f by the trigonometric poly-
nomial

pn(t) = a0 +
n

∑

j=1

[aj cos(jt) + bj sin(jt)],

where we assume |an|+|bn| 6= 0. Since pn has 2n+1 coefficients, we consider the interpolation
problem:

Given 0 ≤ t0 < t1 < · · · < t2n < 2π , find pn(t) satisfying pn(tk) = f(tk), k = 0, 1, · · · , 2n.
Since cos θ = (eiθ + e−iθ)/2, sin θ = (eiθ − e−iθ)/(2i), we may rewrite the above as

pn(t) = a0 +
n

∑

j=1

[

aj
eijt + e−ijt

2
+ bj

eijt − e−ijt

2i

]

=
n

∑

j=−n

cje
ijt,

where

c0 = a0, cj = (aj − ibj)/2, c−j = (aj + ibj)/2, 1 ≤ j ≤ n.

Now consider the case of equally spaced points tk = 2πk/(2n + 1), k = 0, 1, · · · , 2n. To
solve the interpolation problem, we need to find cj , j = −n, · · · , n such that

n
∑

j=−n

cje
ijtk = f(tk), k = 0, 1, · · · , 2n.

To do so, we will need the following result.

Lemma 2. For all integers m,

2n
∑

k=0

eimtk =

{

2n+ 1, if eitm = 1,

0, if eitm 6= 1.

Proof. Since mtk = m2πk/(2n+ 1) = ktm, we get by the sum formula for a geometric series
that

2n
∑

k=0

eimtk =
2n
∑

k=0

eiktm =
2n
∑

k=0

[

eitm
]k

=

{

2n+ 1, if eitm = 1,

([eitm ]2n+1 − 1) /(eitm − 1), if eitm 6= 1.

But

[eitm ]2n+1 = e(2n+1)i2πm/(2n+1) = ei2πm = 1,

so the right hand side in the second case is zero. �
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We use this result in the following way. Multiply the equation

n
∑

j=−n

cje
ijtk = f(tk)

by e−iltk , where −n ≤ l ≤ n, and sum from k = 0 to 2n to get

2n
∑

k=0

n
∑

j=−n

cje
i(j−l)tk =

2n
∑

k=0

e−iltkf(tk).

Reversing the order of summation and applying the lemma (with m = j − l), we have

2n
∑

k=0

n
∑

j=−n

cje
i(j−l)tk =

n
∑

j=−n

cj

2n
∑

k=0

ei(j−l)tk

=
l−1
∑

j=−n

cj

2n
∑

k=0

ei(j−l)tk + cl

2n
∑

k=0

1 +
n

∑

j=l+1

cj

2n
∑

k=0

ei(j−l)tk = cl(2n+ 1).

Note that since −n ≤ j, l ≤ n, −2n ≤ j − l ≤ 2n, and hence |j − l|/(2n + 1) < 1. Thus
eitj−l 6= 1 unless j = l. Replacing l by j, we conclude that

(5.1) cj =
1

2n+ 1

2n
∑

k=0

e−ijtkf(tk), j = −n, · · · , n.

We then recover pn(t) by determining the aj and bj from cj, i.e.,

a0 = c0, aj = cj + c−j, bj = (c−j − cj)/i = i(cj − c−j).

The coefficients {c−n, . . . , cn} are called the finite Fourier transform of the data f(t0), . . . , f(t2n).
Formula (5.1) is related to the formula for the Fourier coefficients of f(t), i.e.,

f(t) =
∞
∑

j=−∞

γje
ijt, γj =

1

2π

∫ 2π

0

e−ijtf(t) dt.

To see this relationship, we approximate the above integral by the composite trapezoidal
rule using N subdivisions of [0, 2π]. If sk = 2πk/N , k = 0, . . . , N , we get

γj =
1

2π

∫ 2π

0

e−ijtf(t) dt =
1

2π

N−1
∑

k=0

∫ sk+1

sk

e−ijtf(t) dt

≈
1

2π

N−1
∑

k=0

2π

N

1

2
[e−ijskf(sk) + e−ijsk+1f(sk+1)] =

1

N

N−1
∑

k=0

e−ijskf(sk),

where we have applied the basic trapezoidal rule
∫ b

a
f(x) dx ≈ (b− a)[f(a)+ f(b)]/2 on each

subinterval and have used the periodicity of f (i.e., f(2π) = f(0)) in the last step. The
coefficients cj in (5.1) correspond to the choice N = 2n+ 1 (for which sk = tk).
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5.2. The Fast Fourier Transform (FFT). We next consider a fast method, called the
Fast Fourier Transform for computing the coefficients {cj}, when the number of data points
is large. To describe the FFT, we consider a more general problem, in which the data f is
of length N , where N = 2r for some integer r. Note, in formula (5.1), we considered the
special case N = 2n+ 1. Then letting wN = e2πi/N , the generalization of (5.1) becomes

cj =
1

N

N−1
∑

k=0

e−ijk2π/Nf(tk) =
1

N

N−1
∑

k=0

(wN)
−kjf(tk), j = 0, 1, . . . , N − 1.

Note that since (wN)
−k(j+N) = (wN)

−kj, cj+N = cj. Thus, the range j = −n, . . . , n in (5.1)
can be changed to j = 0, . . . , 2n, which in our generalized problem becomes j = 0, . . . , N−1.

To evaluate cj if w
j
N is known requires N−1 additions, N−1 multiplications, and 1 division

(if we use nested multiplication). For example, to calculate p(x) = a3x
3 + a2x

2 + a1x + a0,
we write p(x) in the form: p(x) = x[x(a3x + a2) + a1] + a0. Then, evaluation of p(x) takes

3 additions and 3 multiplications. If we compute w
−(l+1)
N by w−1

N w−l
N , then the computation

of wj
N for j = 0, . . . , N requires N multiplications. Hence, the cost of computing all the

cj, j = 0, . . . , N − 1 is N(N − 1) + N = N2 multiplications and N(N − 1) additions. We
now present a method (FFT) that substantially reduces this cost from O(N2) operations to
O(N ln2 N) operations.

The basic idea of the FFT is to reduce the computation of the finite Fourier transform of
a vector {fk} of size 2m to the transform of two vectors of size m. Let

F = (f0, . . . , f2m−1), F
′ = (f0, f2, . . . , f2m−2). =, F

′′ = (f1, f3, . . . , f2m−1).

The first step is to show how to compute {cj} assuming we know

c′j =
1

m

m−1
∑

l=0

f2lw
−lj
m , c′′j =

1

m

m−1
∑

l=0

f2l+1w
−lj
m , j = 0, 1, . . . ,m− 1.

Now for F = (f0, . . . , f2m−1),

cj =
1

2m

2m−1
∑

k=0

fkw
−kj
2m =

1

2m

[

m−1
∑

l=0

f2lw
−2lj
2m +

m−1
∑

l=0

f2l+1w
−(2l+1)j
2m

]

.

Since wm = e2πi/m = [e2πi/(2m)]2 = w2
2m, we get w−2lj

2m = w−lj
m . Hence, for j = 0, . . . ,m− 1,

(5.2) cj =
1

2m

[

m−1
∑

l=0

f2lw
−lj
m + w−j

2m

m−1
∑

l=0

f2l+1w
−lj
m

]

= (c′j + w−j
2mc

′′

j )/2.

To calculate the coefficients cm, . . . , c2m−1, we use the following identities.

w−l(m+j)
m = w−lm

m w−lj
m = [e2πi/m]−lmw−lj

m = e−2πilw−lj
m = w−lj

m .

w
−(m+j)
2m = w−m

2m w−j
2m = [e2πi/(2m)]−mw−j

2m = e−πiw−j
2m = −w−j

2m.
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Then using (5.2), with j replaced by m + j, (and choosing N = 2m), we get for j =
0, 1, . . . ,m− 1,

cm+j =
1

2m

[

m−1
∑

l=0

f2lw
−lj
m − w−j

2m

m−1
∑

l=0

f2l+1w
−lj
m

]

= (c′j − w−j
2mc

′′

j )/2.

Hence, if for j = 0, 1, . . . ,m − 1, c′j and c′′j are known, the calculation of cj for j =

0, 1, . . . , 2m − 1 requires the following operations. First, the computation of w−j
2m, j =

0, 1, . . . ,m. Starting from w−1
2m and using the formula w−j

2m = w−1
2mw

−(j−1)
2m , this requires a

total of m− 1 multiplications. Next, the formation of m products w−j
2mc

′′

j , j = 0, 1, . . . ,m− 1
which requires m multiplications. Finally, we need m additions and m subtractions, a total
of 2m additive operations. We ignore division by 2, which is a fast operation. Thus, we see
that the computation of {cj}, j = 0, 1, . . . , 2m − 1 requires essentially 2m multiplications
and 2m additions plus the evaluation of 2 finite Fourier transforms of size m. To evaluate a
finite Fourier transform of size N = 2r, we use repeated application of this idea. There will
be r levels in this process, ending in the evaluation of a finite Fourier transform of size one.
Hence, to calculate the finite Fourier transform of {f0, . . . , fN}, where N = 2r , the total
number of multiplications will be:

2N + 2 FFT of size N/2 = 2N + 2

[

2
N

2
+ 2 FFT of size N/4

]

= 2N + 2

[

2
N

2
+ 2

(

2
N

4
+ 2 FFT of size N/8

)]

= · · · = 2N + 2

[

2
N

2

]

+ 4

[

2
N

4

]

+ · · ·+ 2r
[

2
N

2r

]

= 2N(r + 1) = 2N(ln2 N + 1) = O(N ln2 N),

and a similar number of additions/subtractions. Thus, the number of operations in the FFT
is proportional to N ln2 N , compared to N2, if we do it in a naive way. So, if N = 1, 000,
this reduces the cost from 1, 000, 000 operations to 10, 000.


