5. The Finite Fourier Transform

We consider the approximation of a periodic function f with period 2π, i.e., $f(t+2 \pi)=$ $f(t)$. Note that a function with a more general period can be reduced to this case in the following simple way. If $g(t+\tau)=g(t)$, and we set $f(t)=g(\tau t /(2 \pi))$, then

$$
f(t+2 \pi)=g(\tau(t+2 \pi) /(2 \pi))=g(\tau t /(2 \pi)+\tau)=g(\tau t /(2 \pi))=f(t)
$$

5.1. Trignometric interpolation. We wish to approximate f by the trigonometric polynomial

$$
p_{n}(t)=a_{0}+\sum_{j=1}^{n}\left[a_{j} \cos (j t)+b_{j} \sin (j t)\right]
$$

where we assume $\left|a_{n}\right|+\left|b_{n}\right| \neq 0$. Since p_{n} has $2 n+1$ coefficients, we consider the interpolation problem:

Given $0 \leq t_{0}<t_{1}<\cdots<t_{2 n}<2 \pi$, find $p_{n}(t)$ satisfying $p_{n}\left(t_{k}\right)=f\left(t_{k}\right), k=0,1, \cdots, 2 n$. Since $\cos \theta=\left(e^{i \theta}+e^{-i \theta}\right) / 2, \sin \theta=\left(e^{i \theta}-e^{-i \theta}\right) /(2 i)$, we may rewrite the above as

$$
p_{n}(t)=a_{0}+\sum_{j=1}^{n}\left[a_{j} \frac{e^{i j t}+e^{-i j t}}{2}+b_{j} \frac{e^{i j t}-e^{-i j t}}{2 i}\right]=\sum_{j=-n}^{n} c_{j} e^{i j t},
$$

where

$$
c_{0}=a_{0}, \quad c_{j}=\left(a_{j}-i b_{j}\right) / 2, \quad c_{-j}=\left(a_{j}+i b_{j}\right) / 2, \quad 1 \leq j \leq n .
$$

Now consider the case of equally spaced points $t_{k}=2 \pi k /(2 n+1), k=0,1, \cdots, 2 n$. To solve the interpolation problem, we need to find $c_{j}, j=-n, \cdots, n$ such that

$$
\sum_{j=-n}^{n} c_{j} e^{i j t_{k}}=f\left(t_{k}\right), \quad k=0,1, \cdots, 2 n
$$

To do so, we will need the following result.
Lemma 2. For all integers m,

$$
\sum_{k=0}^{2 n} e^{i m t_{k}}= \begin{cases}2 n+1, & \text { if } \quad e^{i t_{m}}=1 \\ 0, & \text { if } \quad e^{i t_{m}} \neq 1\end{cases}
$$

Proof. Since $m t_{k}=m 2 \pi k /(2 n+1)=k t_{m}$, we get by the sum formula for a geometric series that

$$
\sum_{k=0}^{2 n} e^{i m t_{k}}=\sum_{k=0}^{2 n} e^{i k t_{m}}=\sum_{k=0}^{2 n}\left[e^{i t_{m}}\right]^{k}= \begin{cases}2 n+1, & \text { if } e^{i t_{m}}=1 \\ \left(\left[e^{i t_{m}}\right]^{2 n+1}-1\right) /\left(e^{i t_{m}}-1\right), & \text { if } \quad e^{i t_{m}} \neq 1\end{cases}
$$

But

$$
\left[e^{i t_{m}}\right]^{2 n+1}=e^{(2 n+1) i 2 \pi m /(2 n+1)}=e^{i 2 \pi m}=1,
$$

so the right hand side in the second case is zero.

We use this result in the following way. Multiply the equation

$$
\sum_{j=-n}^{n} c_{j} e^{i j t_{k}}=f\left(t_{k}\right)
$$

by $e^{-i l t_{k}}$, where $-n \leq l \leq n$, and sum from $k=0$ to $2 n$ to get

$$
\sum_{k=0}^{2 n} \sum_{j=-n}^{n} c_{j} e^{i(j-l) t_{k}}=\sum_{k=0}^{2 n} e^{-i l t_{k}} f\left(t_{k}\right)
$$

Reversing the order of summation and applying the lemma (with $m=j-l$), we have

$$
\begin{aligned}
\sum_{k=0}^{2 n} \sum_{j=-n}^{n} c_{j} e^{i(j-l) t_{k}}= & \sum_{j=-n}^{n} c_{j} \sum_{k=0}^{2 n} e^{i(j-l) t_{k}} \\
& =\sum_{j=-n}^{l-1} c_{j} \sum_{k=0}^{2 n} e^{i(j-l) t_{k}}+c_{l} \sum_{k=0}^{2 n} 1+\sum_{j=l+1}^{n} c_{j} \sum_{k=0}^{2 n} e^{i(j-l) t_{k}}=c_{l}(2 n+1)
\end{aligned}
$$

Note that since $-n \leq j, l \leq n,-2 n \leq j-l \leq 2 n$, and hence $|j-l| /(2 n+1)<1$. Thus $e^{i t_{j-l}} \neq 1$ unless $j=l$. Replacing l by j, we conclude that

$$
\begin{equation*}
c_{j}=\frac{1}{2 n+1} \sum_{k=0}^{2 n} e^{-i j t_{k}} f\left(t_{k}\right), \quad j=-n, \cdots, n \tag{5.1}
\end{equation*}
$$

We then recover $p_{n}(t)$ by determining the a_{j} and b_{j} from c_{j}, i.e.,

$$
a_{0}=c_{0}, \quad a_{j}=c_{j}+c_{-j}, \quad b_{j}=\left(c_{-j}-c_{j}\right) / i=i\left(c_{j}-c_{-j}\right)
$$

The coefficients $\left\{c_{-n}, \ldots, c_{n}\right\}$ are called the finite Fourier transform of the data $f\left(t_{0}\right), \ldots, f\left(t_{2 n}\right)$. Formula (5.1) is related to the formula for the Fourier coefficients of $f(t)$, i.e.,

$$
f(t)=\sum_{j=-\infty}^{\infty} \gamma_{j} e^{i j t}, \quad \gamma_{j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i j t} f(t) d t
$$

To see this relationship, we approximate the above integral by the composite trapezoidal rule using N subdivisions of $[0,2 \pi]$. If $s_{k}=2 \pi k / N, k=0, \ldots, N$, we get

$$
\begin{aligned}
\gamma_{j}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i j t} f(t) d t & =\frac{1}{2 \pi} \sum_{k=0}^{N-1} \int_{s_{k}}^{s_{k+1}} e^{-i j t} f(t) d t \\
& \approx \frac{1}{2 \pi} \sum_{k=0}^{N-1} \frac{2 \pi}{N} \frac{1}{2}\left[e^{-i j s_{k}} f\left(s_{k}\right)+e^{-i j s_{k+1}} f\left(s_{k+1}\right)\right]=\frac{1}{N} \sum_{k=0}^{N-1} e^{-i j s_{k}} f\left(s_{k}\right),
\end{aligned}
$$

where we have applied the basic trapezoidal rule $\int_{a}^{b} f(x) d x \approx(b-a)[f(a)+f(b)] / 2$ on each subinterval and have used the periodicity of f (i.e., $f(2 \pi)=f(0))$ in the last step. The coefficients c_{j} in (5.1) correspond to the choice $N=2 n+1$ (for which $s_{k}=t_{k}$).
5.2. The Fast Fourier Transform (FFT). We next consider a fast method, called the Fast Fourier Transform for computing the coefficients $\left\{c_{j}\right\}$, when the number of data points is large. To describe the FFT, we consider a more general problem, in which the data f is of length N, where $N=2^{r}$ for some integer r. Note, in formula (5.1), we considered the special case $N=2 n+1$. Then letting $w_{N}=e^{2 \pi i / N}$, the generalization of (5.1) becomes

$$
c_{j}=\frac{1}{N} \sum_{k=0}^{N-1} e^{-i j k 2 \pi / N} f\left(t_{k}\right)=\frac{1}{N} \sum_{k=0}^{N-1}\left(w_{N}\right)^{-k j} f\left(t_{k}\right), \quad j=0,1, \ldots, N-1 .
$$

Note that since $\left(w_{N}\right)^{-k(j+N)}=\left(w_{N}\right)^{-k j}, c_{j+N}=c_{j}$. Thus, the range $j=-n, \ldots, n$ in (5.1) can be changed to $j=0, \ldots, 2 n$, which in our generalized problem becomes $j=0, \ldots, N-1$.

To evaluate c_{j} if w_{N}^{j} is known requires $N-1$ additions, $N-1$ multiplications, and 1 division (if we use nested multiplication). For example, to calculate $p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}$, we write $p(x)$ in the form: $p(x)=x\left[x\left(a_{3} x+a_{2}\right)+a_{1}\right]+a_{0}$. Then, evaluation of $p(x)$ takes 3 additions and 3 multiplications. If we compute $w_{N}^{-(l+1)}$ by $w_{N}^{-1} w_{N}^{-l}$, then the computation of w_{N}^{j} for $j=0, \ldots, N$ requires N multiplications. Hence, the cost of computing all the $c_{j}, j=0, \ldots, N-1$ is $N(N-1)+N=N^{2}$ multiplications and $N(N-1)$ additions. We now present a method (FFT) that substantially reduces this cost from $O\left(N^{2}\right)$ operations to $O\left(N \ln _{2} N\right)$ operations.

The basic idea of the FFT is to reduce the computation of the finite Fourier transform of a vector $\left\{f_{k}\right\}$ of size $2 m$ to the transform of two vectors of size m. Let

$$
\boldsymbol{F}=\left(f_{0}, \ldots, f_{2 m-1}\right), \quad \boldsymbol{F}^{\prime}=\left(f_{0}, f_{2}, \ldots, f_{2 m-2}\right) .=, \quad \boldsymbol{F}^{\prime \prime}=\left(f_{1}, f_{3}, \ldots, f_{2 m-1}\right)
$$

The first step is to show how to compute $\left\{c_{j}\right\}$ assuming we know

$$
c_{j}^{\prime}=\frac{1}{m} \sum_{l=0}^{m-1} f_{2 l} w_{m}^{-l j}, \quad c_{j}^{\prime \prime}=\frac{1}{m} \sum_{l=0}^{m-1} f_{2 l+1} w_{m}^{-l j}, \quad j=0,1, \ldots, m-1 .
$$

Now for $\boldsymbol{F}=\left(f_{0}, \ldots, f_{2 m-1}\right)$,

$$
c_{j}=\frac{1}{2 m} \sum_{k=0}^{2 m-1} f_{k} w_{2 m}^{-k j}=\frac{1}{2 m}\left[\sum_{l=0}^{m-1} f_{2 l} w_{2 m}^{-2 l j}+\sum_{l=0}^{m-1} f_{2 l+1} w_{2 m}^{-(2 l+1) j}\right] .
$$

Since $w_{m}=e^{2 \pi i / m}=\left[e^{2 \pi i /(2 m)}\right]^{2}=w_{2 m}^{2}$, we get $w_{2 m}^{-2 l j}=w_{m}^{-l j}$. Hence, for $j=0, \ldots, m-1$,

$$
\begin{equation*}
c_{j}=\frac{1}{2 m}\left[\sum_{l=0}^{m-1} f_{2 l} w_{m}^{-l j}+w_{2 m}^{-j} \sum_{l=0}^{m-1} f_{2 l+1} w_{m}^{-l j}\right]=\left(c_{j}^{\prime}+w_{2 m}^{-j} c_{j}^{\prime \prime}\right) / 2 . \tag{5.2}
\end{equation*}
$$

To calculate the coefficients $c_{m}, \ldots, c_{2 m-1}$, we use the following identities.

$$
\begin{aligned}
& w_{m}^{-l(m+j)}=w_{m}^{-l m} w_{m}^{-l j}=\left[e^{2 \pi i / m}\right]^{-l m} w_{m}^{-l j}=e^{-2 \pi i l} w_{m}^{-l j}=w_{m}^{-l j} . \\
& w_{2 m}^{-(m+j)}=w_{2 m}^{-m} w_{2 m}^{-j}=\left[e^{2 \pi i /(2 m)}\right]^{-m} w_{2 m}^{-j}=e^{-\pi i} w_{2 m}^{-j}=-w_{2 m}^{-j} .
\end{aligned}
$$

Then using (5.2), with j replaced by $m+j$, (and choosing $N=2 m$), we get for $j=$ $0,1, \ldots, m-1$,

$$
c_{m+j}=\frac{1}{2 m}\left[\sum_{l=0}^{m-1} f_{2 l} w_{m}^{-l j}-w_{2 m}^{-j} \sum_{l=0}^{m-1} f_{2 l+1} w_{m}^{-l j}\right]=\left(c_{j}^{\prime}-w_{2 m}^{-j} c_{j}^{\prime \prime}\right) / 2 .
$$

Hence, if for $j=0,1, \ldots, m-1, c_{j}^{\prime}$ and $c_{j}^{\prime \prime}$ are known, the calculation of c_{j} for $j=$ $0,1, \ldots, 2 m-1$ requires the following operations. First, the computation of $w_{2 m}^{-j}, j=$ $0,1, \ldots, m$. Starting from $w_{2 m}^{-1}$ and using the formula $w_{2 m}^{-j}=w_{2 m}^{-1} w_{2 m}^{-(j-1)}$, this requires a total of $m-1$ multiplications. Next, the formation of m products $w_{2 m}^{-j} c_{j}^{\prime \prime}, j=0,1, \ldots, m-1$ which requires m multiplications. Finally, we need m additions and m subtractions, a total of $2 m$ additive operations. We ignore division by 2 , which is a fast operation. Thus, we see that the computation of $\{c j\}, j=0,1, \ldots, 2 m-1$ requires essentially $2 m$ multiplications and $2 m$ additions plus the evaluation of 2 finite Fourier transforms of size m. To evaluate a finite Fourier transform of size $N=2^{r}$, we use repeated application of this idea. There will be r levels in this process, ending in the evaluation of a finite Fourier transform of size one. Hence, to calculate the finite Fourier transform of $\left\{f_{0}, \ldots, f_{N}\right\}$, where $N=2^{r}$, the total number of multiplications will be:

$$
\begin{aligned}
& 2 N+2 \text { FFT of size } N / 2=2 N+2\left[2 \frac{N}{2}+2 \text { FFT of size } N / 4\right] \\
& \qquad \begin{aligned}
= & 2 N+2\left[2 \frac{N}{2}+2\left(2 \frac{N}{4}+2 \text { FFT of size } N / 8\right)\right] \\
= & \cdots=2 N+2\left[2 \frac{N}{2}\right]
\end{aligned}+4\left[2 \frac{N}{4}\right]+\cdots+2^{r}\left[2 \frac{N}{2^{r}}\right] \\
& \\
& =2 N(r+1)=2 N\left(\ln _{2} N+1\right)=O\left(N \ln _{2} N\right)
\end{aligned}
$$

and a similar number of additions/subtractions. Thus, the number of operations in the FFT is proportional to $N \ln _{2} N$, compared to N^{2}, if we do it in a naive way. So, if $N=1,000$, this reduces the cost from $1,000,000$ operations to 10,000 .

