4. Spline approximation

4.1. Cubic spline interpolation. We consider the problem of finding a C^{2} piecewise cubic function $S(x)$ that satisfies $S\left(x_{i}\right)=f\left(x_{i}\right), i=0, \ldots, n$ plus two additional conditions. These are usually taken to be either $S^{\prime \prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)$ and $S^{\prime \prime}\left(x_{n}\right)=f^{\prime \prime}\left(x_{n}\right)$ or $S^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)$ and $S^{\prime}\left(x_{n}\right)=f^{\prime}\left(x_{n}\right)$. We will consider the first set of conditions.

We will obtain $S(x)$ by first obtaining $S^{\prime \prime}(x)$ and then integrating. Since $S^{\prime \prime}(x)$ is a continuous piecewise linear function, it is uniquely determined by the values $S^{\prime \prime}\left(x_{i}\right), i=$ $0, \ldots, n$. On the subinterval $\left[x_{i-1}, x_{i}\right]$, we can write it in the form

$$
S^{\prime \prime}(x)=S_{i}^{\prime \prime}(x)=\frac{x_{i}-x}{h_{i}} S^{\prime \prime}\left(x_{i-1}\right)+\frac{x-x_{i-1}}{h_{i}} S^{\prime \prime}\left(x_{i}\right),
$$

where $h_{i}=x_{i}-x_{i-1}$. Integrate twice on each subinterval to get

$$
S_{i}(x)=\frac{h_{i}^{2}}{6}\left[\frac{x_{i}-x}{h_{i}}\right]^{3} S^{\prime \prime}\left(x_{i-1}\right)+\frac{h_{i}^{2}}{6}\left[\frac{x-x_{i-1}}{h_{i}}\right]^{3} S^{\prime \prime}\left(x_{i}\right)+A_{i} \frac{x_{i}-x}{h_{i}}+B_{i} \frac{x-x_{i-1}}{h_{i}} .
$$

Note: Integrating twice introduces an arbitrary linear function that we represent as above.

$$
\text { Now } \quad f\left(x_{i-1}\right)=S_{i}\left(x_{i-1}\right)=\frac{h_{i}^{2}}{6} S^{\prime \prime}\left(x_{i-1}\right)+A_{i}, \quad f\left(x_{i}\right)=S_{i}\left(x_{i}\right)=\frac{h_{i}^{2}}{6} S^{\prime \prime}\left(x_{i}\right)+B_{i} .
$$

Hence,

$$
\begin{aligned}
& S_{i}(x)=\frac{h_{i}^{2}}{6}\left[\frac{x_{i}-x}{h_{i}}\right]^{3} S^{\prime \prime}\left(x_{i-1}\right)+\frac{h_{i}^{2}}{6}\left[\frac{x-x_{i-1}}{h_{i}}\right]^{3} S^{\prime \prime}\left(x_{i}\right) \\
&+\left[f\left(x_{i-1}\right)-\frac{h_{i}^{2}}{6} S^{\prime \prime}\left(x_{i-1}\right)\right] \frac{x_{i}-x}{h_{i}}+\left[f\left(x_{i}\right)-\frac{h_{i}^{2}}{6} S^{\prime \prime}\left(x_{i}\right)\right] \frac{x-x_{i-1}}{h_{i}} .
\end{aligned}
$$

We next determine the values of $S^{\prime \prime}\left(x_{i}\right)$ by the conditions that S^{\prime} is continuous at each x_{i}, i.e., $S_{i}^{\prime}\left(x_{i}\right)=S_{i+1}^{\prime}\left(x_{i}\right), i=1, \ldots, n-1$. Now

$$
\begin{aligned}
S_{i}^{\prime}(x)=-\frac{h_{i}}{2}\left[\frac{x_{i}-x}{h_{i}}\right]^{2} S^{\prime \prime}\left(x_{i-1}\right)+\frac{h_{i}}{2} & {\left[\frac{x-x_{i-1}}{h_{i}}\right]^{2} S^{\prime \prime}\left(x_{i}\right) } \\
& -\left[f\left(x_{i-1}\right)-\frac{h_{i}^{2}}{6} S^{\prime \prime}\left(x_{i-1}\right)\right] \frac{1}{h_{i}}+\left[f\left(x_{i}\right)-\frac{h_{i}^{2}}{6} S^{\prime \prime}\left(x_{i}\right)\right] \frac{1}{h_{i}} .
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{i}^{\prime}\left(x_{i}\right) & =\frac{h_{i}}{3} S^{\prime \prime}\left(x_{i}\right)+\frac{h_{i}}{6} S^{\prime \prime}\left(x_{i-1}\right)+\frac{1}{h_{i}}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right], \\
S_{i+1}^{\prime}\left(x_{i}\right) & =-\frac{h_{i+1}}{3} S^{\prime \prime}\left(x_{i}\right)-\frac{h_{i+1}}{6} S^{\prime \prime}\left(x_{i+1}\right)+\frac{1}{h_{i+1}}\left[f\left(x_{i+1}\right)-f\left(x_{i}\right)\right] .
\end{aligned}
$$

Equating these quantities to insure continuity, we get:

$$
\frac{h_{i}}{6} S^{\prime \prime}\left(x_{i-1}\right)+\frac{h_{i}+h_{i+1}}{3} S^{\prime \prime}\left(x_{i}\right)+\frac{h_{i+1}}{6} S^{\prime \prime}\left(x_{i+1}\right)=f\left[x_{i}, x_{i+1}\right]-f\left[x_{i-1}, x_{i}\right] .
$$

Thus, the $n-1$ quantities $S^{\prime \prime}\left(x_{1}\right), \ldots, S^{\prime \prime}\left(x_{n-1}\right)$ are determined by solving the linear system

$$
\left.\begin{array}{rl}
\left(\begin{array}{cccc}
\left(h_{1}+h_{2}\right) / 3 & h_{2} / 6 & \ldots & \cdots \\
h_{2} / 6 & \left(h_{2}+h_{3}\right) / 3 & h_{3} / 6 & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & h_{n-1} / 6 & \left(h_{n-1}+h_{n}\right) / 3
\end{array}\right)\left(\begin{array}{c}
S^{\prime \prime}\left(x_{1}\right) \\
S^{\prime \prime}\left(x_{2}\right) \\
\cdots \\
S^{\prime \prime}\left(x_{n-1}\right)
\end{array}\right) \\
& \\
& \\
& \\
&
\end{array} \begin{array}{c}
f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]-h_{1} f^{\prime \prime}\left(x_{0}\right) / 6 \\
f\left[x_{2}, x_{3}\right]-f\left[x_{1}, x_{2}\right] \\
\cdots \\
f\left[x_{n-1}, x_{n}\right]-f\left[x_{n-2}, x_{n-1}\right]-h_{n} f^{\prime \prime}\left(x_{n}\right) / 6
\end{array}\right) .
$$

To check that the matrix is nonsingular, we can use the following result.
Theorem 2. Let $A=\left(a_{i j}\right)$ be an $N \times N$ matrix. If $\left|a_{i i}\right|>\sum_{i \neq j}\left|a_{i j}\right|, i=1,2, \ldots, N$, then A is nonsingular.

Proof. Suppose A is singular. Then there is a vector $x \neq 0$ such that $\sum_{j=1}^{N} a_{i j} x_{j}=0$ for $i=1, \ldots, N$. Let k satisfy $\left|x_{k}\right| \geq\left|x_{j}\right|, j \neq k$. Note $\left|x_{k}\right| \neq 0$. Since $a_{k k} x_{k}=-\sum_{j \neq k} a_{k j} x_{j}$, $\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{j \neq k}\left|a_{k j}\right|\left|x_{j}\right|$. Hence

$$
\left|a_{k k}\right| \leq \sum_{j \neq k}\left|a_{k j}\right|\left(\left|x_{j}\right| /\left|x_{k}\right|\right) \leq \sum_{j \neq k}\left|a_{k j}\right| .
$$

Contradiction.
4.2. Spline basis functions. Any spline function of degree n can be expressed as a linear combination of B-splines (basis functions).

Given a set of knots $t_{0}, t_{1}, \ldots t_{m}$, we show how to define a B -spline basis $B_{i, n}$, where n denotes the degree of the spline, and i denotes the associated knot.

The definition is by the following recursion formula (Cox-de Boor)

$$
\begin{aligned}
B_{i, 0} & := \begin{cases}1 & \text { if } t_{i} \leq x<t_{i+1} \\
0 & \text { otherwise }\end{cases} \\
B_{i, k} & :=\frac{x-t_{i}}{t_{i+k}-t_{i}} B_{i, k-1}(x)+\frac{t_{i+k+1}-x}{t_{i+k+1}-t_{i+1}} B_{i+1, k-1}(x) .
\end{aligned}
$$

So when $k=1$, we have

$$
B_{i, 1}=\frac{x-t_{i}}{t_{i+1}-t_{i}} B_{i, 0}(x)+\frac{t_{i+2}-x}{t_{i+2}-t_{i+1}} B_{i+1,0}(x)
$$

If we insert the definitions of $B_{i, 0}$ and $B_{i+1,0}$, we see that

$$
B_{i, 1}= \begin{cases}\left(x-t_{i}\right) /\left(t_{i+1}-t_{i}\right) & \text { if } t_{i} \leq x<t_{i+1} \\ \left(t_{i+2}-x\right) /\left(t_{i+2}-t_{i+1}\right) & \text { if } t_{i+1} \leq x<t_{i+2} \\ 0 & \text { otherwise }\end{cases}
$$

Note, $B_{i, 1}$ is nonzero on only two subintervals.
To compute $B_{i, 2}$, we need $B_{i, 1}$ (which is non-zero only on the interval $\left[t_{i}, t_{i+2}\right]$) and $B_{i+1,1}$ (which is non-zero only on the interval $\left[t_{i+1}, t_{i+3}\right]$). Hence $B_{i, 2}$ will be non-zero only on three subintervals. Continuing in this way, $B_{i, 3}$ will be non-zero only on four subintervals.

To see how the recursion goes, we compute $B_{i, 2}$.

$$
\begin{aligned}
B_{i, 2}(x)= & \frac{x-t_{i}}{t_{i+2}-t_{i}} B_{i, 1}(x)+\frac{t_{i+3}-x}{t_{i+3}-t_{i+1}} B_{i+1,1}(x) \\
= & \frac{x-t_{i}}{t_{i+2}-t_{i}}\left[\frac{x-t_{i}}{t_{i+1}-t_{i}} B_{i, 0}(x)+\frac{t_{i+2}-x}{t_{i+2}-t_{i+1}} B_{i+1,0}(x)\right] \\
& \quad+\frac{t_{i+3}-x}{t_{i+3}-t_{i+1}}\left[\frac{x-t_{i+1}}{t_{i+2}-t_{i+1}} B_{i+1,0}(x)+\frac{t_{i+3}-x}{t_{i+3}-t_{i+2}} B_{i+2,0}(x)\right] \\
= & \frac{\left(x-t_{i}\right)^{2}}{\left(t_{i+2}-t_{i}\right)\left(t_{i+1}-t_{i}\right)} B_{i, 0}+\left[\frac{\left(x-t_{i}\right)\left(t_{i+2}-x\right)}{\left(t_{i+2}-t_{i}\right)\left(t_{i+2}-t_{i+1}\right)}+\frac{\left(x-t_{i+1}\right)\left(t_{i+3}-x\right)}{\left(t_{i+2}-t_{i+1}\right)\left(t_{i+3}-t_{i+1}\right)}\right] B_{i+1,0} \\
& \quad+\frac{\left(t_{i+3}-x\right)^{2}}{\left(t_{i+3}-t_{i+1}\right)\left(t_{i+3}-t_{i+2}\right)} B_{i+2,0} .
\end{aligned}
$$

Note that by the definition of $B_{j, 0}$, the polynomial coefficient of $B_{j, 0}$ gives the definition of $B_{i, 2}(x)$ on the subinterval $t_{j} \leq x<t_{j+1}$.

In this notation, we have associated the basis function $B_{i, k}$ to the knot t_{i}. For k odd, we often prefer to associate it to the middle knot. For example, given a mesh $a=x_{0}<x_{1}<$ $\ldots<x_{N}=b$ we would define the basis function $\phi_{i, 1}$ associated to the mesh point x_{i} by

$$
\phi_{i, 1}= \begin{cases}\left(x-x_{i-1}\right) /\left(x_{i}-x_{i-1}\right) & \text { if } x_{i-1} \leq x<x_{i} \\ \left(x_{i+1}-x\right) /\left(x_{i+1}-x_{i}\right) & \text { if } x_{i} \leq x<x_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

Graph of $\phi_{i, 1}(x)$, called the hat function

When the mesh points are equally spaced, we can simplify the process. For example, to get a basis for the space of cubic splines defined on the partition $a=x_{0}<\ldots<x_{n}=b$, where $x_{i+1}-x_{i}=h$, we first compute the cubic spline basis function B_{3} on the knots $\{-2,-1,0,1,2\}$ and then define for $i=-1, \ldots, n+1$, the B-spline $\phi_{i, 3}(x)=B_{3}\left(\left[x-x_{i}\right] / h\right)$, where we restrict these functions to the interval $[a, b]$. This gives the required $n+3$ basis functions. Note that $\phi_{i .3}(x) \geq 0$ and one can show that $\sum \phi_{i, 3}(x)=1$,

Figure 2. B-Spline B_{3}
4.3. Error in cubic spline interpolation. One can derive the following error estimates for cubic spline interpolation. Again, we consider only the case when $S^{\prime \prime}(a)=f^{\prime \prime}(a)$ and $S^{\prime \prime}(b)=f^{\prime \prime}(b)$.

Theorem 3. There exists constants C_{0}, C_{1}, and C_{2}, independent of f, such that

$$
\begin{gathered}
\max _{a \leq x \leq b}|f(x)-S(x)| \leq C_{0} h^{4} M_{4}, \quad \max _{a \leq x \leq b}\left|f^{\prime}(x)-S^{\prime}(x)\right| \leq C_{1} h^{3} M_{4}, \\
\max _{a \leq x \leq b}\left|f^{\prime \prime}(x)-S^{\prime \prime}(x)\right| \leq C_{2} h^{2} M_{4},
\end{gathered}
$$

where $M_{4}=\max _{a \leq x \leq b}\left|f^{4}(x)\right|$.
Splines have applications in computer graphics when smooth curves are desired. Considering the case of equally spaced points, we can use the B-spline basis defined previously to write any cubic spline $S(t)$ satisfying $S^{\prime \prime}\left(t_{0}\right)=S^{\prime \prime}\left(t_{n}\right)=0$ in the form

$$
S(t)=\sum_{i=0}^{n} p_{i} \phi_{i, 3}(t)
$$

where $\phi_{i, 3}(t)$ is the cubic spline basis function centered at $t=t_{i}$. In this case, the values p_{i}, which are the degrees of freedom for $S(t)$, are called control points. Note that $S\left(t_{i}\right) \neq p_{i}$. An important aspect of this type of basis is that since each basis function $\phi_{i, 3}(t)$ is nonzero only on the four subintervals $\left[t_{i-2}, t_{i-1}\right],\left[t_{i-i}, t_{i}\right],\left[t_{i}, t_{i+1}\right],\left[t_{i+1}, t_{i+2}\right]$, if we change the value of the control point p_{i}, we only change the value of S on these four subintervals.

Consider the interval $[-1,1]$ and an equally spaced mesh of width $1 / 8$. The following pictures show first a graph of a B-spline basis function centered at $t=0$ (and hence nonzero only on the interval $[-1 / 4,1 / 4]$ and then a graph of another choice of basis function, i.e., a cubic spline that is equal to one at $t=0$, equal to zero at the other mesh points $\pm i / 8, i=$ $1,2, \ldots, 8$. Note that the second graph is different from zero on more than four subintervals. In fact, as seen in the final plot showing a magnified view of the second graph on the interval $[.5,1]$, although the value of the this spline is small, it is not zero on any of the subintervals.

