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13.12. Discontinuous Galerkin methods for ordinary differential equations. Refer-
ence: Delfour, Hager and Trochu, Math. Comp. (36) 1981, pp. 455-472.

Consider the problem y′ = f(t, y), y(0) = α.
Let 0 = t0 < t1 < . . . < tN = T , Ij = (tj−1, tj), and

Vh = {v : v|Ij ∈ Pk(Ij), j = 1, · · · , N}.

The approximation scheme is:
Find yh ∈ Vh and yh(0

−) or yh(T
+) such that for 1 ≤ j ≤ N ,

∫ tj

tj−1

[dyh/dt− f(t, yh)]v dt+ v(t+j−1)αj−1[yh(t
+

j−1)− yh(t
−

j−1)]

+ v(t−j )(1− αj)[yh(t
+

j )− yh(t
−

j )] = 0, ∀v ∈ Pk(Ij),

where α0, . . . , αN are scalars with 0 ≤ αj ≤ 1 and we evaluate the integrals using a k + 1
point quadrature formula exact for polynomials of degree ≤ 2k + 1.

In this method, we produce a discontinuous piecewise polynomial approximation to the
solution, i.e., the value yh(t

−

j ) gives an approximation to y(tj) inside the interval (tj−1, tj)

and yh(t
+

j ) gives an approximation to y(tj) inside the interval (tj, tj+1). Note that the true
solution of the initial value problem satisfies the equation given by the approximation scheme,
since it satisfies the differential equation and for all j, the jump terms yh(t

+

j )− yh(t
−

j ) = 0.

We will assume that either (i) α0 = 0 and αj 6= 1, j = 1, . . . N , or (ii) αN = 1 and αj 6= 0,
j = 0, . . . N − 1. In case (i), the unknown y(0−) disappears and in case (ii), the unknown
y(T+) disappears. Hence we have N(k+1)+1 unknowns and N(k+1)+1 equations, where
one of the unknowns and equations is determined by the initial condition and the rest from
the above equation.

Consider some special cases: k = 0. Then yh is a constant on each subinterval so yh(t
−

j ) =

yh(t
+

j−1). Taking v = 1, and applying the midpoint quadrature rule (a one-point formula
exact for linear polynomials), we get:

yh(t
−

j )−yh(t
+

j−1)−hf(tj−1/2, yh(tj−1/2))+αj−1[yh(t
+

j−1)−yh(t
−

j−1)]+(1−αj−1)[yh(t
+

j )−yh(t
−

j )] = 0.

Now suppose αj = 0 for all j. Then

yh(t
+

j )− yh(t
+

j−1) = hf(tj−1/2, yh(t
+

j−1)), j = 1, . . . , N.

In this case, yh(t
+

j ) denotes the approximation to the true solution y(tj), so the method is
similar to explicit Euler, except that t is evaluated at tj−1/2 instead of tj−1. In this case the
starting value is yh(t

+

0 ) and yh(t
−

0 ) is not part of the method.

Next suppose αj = 1 for all j (k = 0). Then

yh(t
−

j )− yh(t
−

j−1) = hf(tj−1/2, yh(t
−

j )), j = 1, . . . , N.

In this case, yh(t
−

j ) denotes the approximation to the true solution y(tj), so the method is
similar to implicit Euler, except that t evaluated at tj−1/2 instead of tj. In this case the
starting value is yh(t

−

0 ) and yh(T
+) is not part of the method.
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The methods with the choice αj = 1 are equivalent to implicit Runge-Kutta methods.

When k = 1, yh will be a linear polynomial on the subinterval (tj−1, tj) which we write as:

yh(t) = [1− (t− tj−1)/h]yh(t
+

j−1) + [(t− tj−1)/h]yh(t
−

j ).

If αj = 1, the equations are∫ tj

tj−1

[dyh/dt− f(t, yh)]v dt+ v(t+j−1)[yh(t
+

j−1)− yh(t
−

j−1)] = 0,

where we evaluate the integral using a 2-point Gauss formula. We now have two unknowns
yh(t

+

j−1) and yh(t
−

j ), and get two equations by choosing v = 1 and v = t. We thus need to
solve a 2× 2 system of non-linear equations.


