13.6. Stability of linear multistep methods.

Definition: 1st and 2nd characteristic polynomial of a multistep method:

$$
\rho(z)=z^{p+1}-\sum_{i=0}^{p} a_{i} z^{p-i}, \quad \sigma(z)=\sum_{i=-1}^{p} b_{i} z^{p-i}
$$

The linear multistep method is consistent if $\rho(1)=0$ and $\rho^{\prime}(1)=\sigma(1)$. The first identity is obvious. The second implies

$$
(p+1)-\sum_{i=0}^{p}(p-i) a_{i}=\sum_{i=-1}^{p} b_{i} .
$$

Hence

$$
p\left(1-\sum_{i=0}^{p} a_{i}\right)+1-\sum_{i=0}^{p}(-i) a_{i}-\sum_{i=-1}^{p} b_{i}=0 .
$$

Since the first term in the sum is zero, then so is the second.
Definition: The linear multistep method is said to be zero-stable (satisfy the root condition) if no root of the characteristic polynomial $\rho(z)$ has modulus greater than one and if every root of modulus one is simple.

Theorem 13. A necessary condition for convergence of a linear multistep method is that it be zero-stable.

Proof. We only give the proof in the case that the roots of $\rho(z)$ are real simple roots. If the method is convergent, then it is convergent for the IVP $y^{\prime}=0, y(0)=0$, whose solution is $y(x)=0$. For this problem, the method becomes $y_{n+1}=\sum_{i=0}^{p} a_{i} y_{n-i}$. If the method is convergent, then by (i), for any $x>0$,

$$
\lim y_{n}^{h}=0, \quad n \rightarrow \infty, \quad h \rightarrow 0, \quad n h=x
$$

for all solutions $\left\{y_{n}\right\}$ of the difference equation satisfying (ii) $\lim _{h \rightarrow 0} y_{k}(h)=0, k=0, \ldots, p$. We first show that all roots have modulus ≤ 1. Let $z=r$ be a real root of $\rho(z)$. Then $y_{n}=r^{n}$ is a solution of the difference equation and so is $y_{n}=h r^{n}$. Note that this second solution satisfies (ii). Hence, (i) must hold, i.e., $\lim _{n \rightarrow \infty} x r^{n} / n=0$. Now

$$
\lim _{n \rightarrow \infty} x r^{n} / n=x \lim _{n \rightarrow \infty} r^{n} / n=0
$$

if $0 \leq|r| \leq 1$. If $r>1$, using L'Hospital's rule,

$$
x \lim _{n \rightarrow \infty} r^{n} / n=x \lim _{n \rightarrow \infty} r^{n} \ln r / 1=\infty
$$

A similar result hold if $r<-1$. Hence for (i) to hold, we require $|r| \leq 1$.
Theorem 14. A necessary and sufficient condition for a linear multistep method to be convergent is that it be consistent and zero-stable.

Proof. We have shown these conditions are necessary. The proof of sufficiency can be found in Henrici: Discrete Variable Methods in Ordinary Differential Equations.

Example: Midpoint rule: $y_{n+1}=y_{n-1}+2 h f_{n}$. Then $p=1, a_{0}=0, a_{1}=1, b_{-1}=0$, $b_{0}=2, b_{1}=0$. Hence $\sum_{i=0}^{p} a_{i}=1$ and $-\sum_{i=0}^{p} i a_{i}+\sum_{i=1}^{p} b_{i}=-1+2=1$, so the method is consistent. To check zero-stability, we find the roots of the characteristic polynomial $\rho(z)=z^{p+1}-\sum_{i=0}^{p} a_{i} z^{p-i}=z^{2}-a_{1}=z^{2}-1$. The roots are $z= \pm 1$. Since both roots have modulus 1 and both are simple, the method is zero-stable. Hence, the method is convergent.

Question: How high an order can be achieved in a $(p+1)$ step method if it is consistent and zero-stable? In seeking high order methods, we automatically get consistency; zero-stability poses a more difficult constraint. Recall that a $(p+1)$ step method has $(2 p+3)$ coefficients, $p+1 a_{i}$ s and $p+2 b_{i}$'s. If the method is explicit, this number is reduced by one. Hence, we can expect at most order $2 p+2$ for an implicit method and $2 p+1$ for an explicit method (recall that if a method has order r, it is exact for all polynomials of degree $\leq r$). However, the following result is known.

Theorem 15. (Dahlquist) No zero-stable $p+1$ step linear multistep method can have order exceeeding $p+2$ when p is even or exceeding $p+3$ when p is odd.

A zero-stable $p+1$ step method which has order $p+3$ is called an optimal method. It can be shown that for an optimal method, all the roots of $\rho(z)$ lie on the unit circle.

Example: Simpson's rule: $y_{n+1}=y_{n-1}+(h / 3)\left[f_{n+1}+4 f_{n}+f_{n-1}\right]$. Since $p=1$, this is a two-step method. The local truncation error is $-(1 / 90) h^{5} y^{(5)}(\xi)$. It is a fourth order method, so Simpson's rule is an optimal method. However, we shall see that Simpson's rule has computational disadvantages that make it unsuitable as a general purpose method. These disadvantages are shared by all optimal order methods. Hence, we will not choose the coefficients in a multistep method solely to achieve maximum order.

To understand this issue, consider the problem $y^{\prime}=-y, y(0)=1$, whose exact solution is $y(x)=e^{-x}$. We apply the midpoint rule method $y_{n+1}=y_{n-1}+2 h f_{n}$, which in this case becomes $y_{n+1}+2 h y_{n}-y_{n-1}=0$. Since this is a linear difference equation with constant coefficients, we solve it by first computing the roots of the characteristic polynomial $\rho(z)=$ $z^{2}+2 h z-1=0$. Then $z=-h \pm \sqrt{1+h^{2}}$, so the general solution has the form

$$
y_{n}=C_{1}\left(-h+\sqrt{1+h^{2}}\right)^{n}+C_{2}\left(-h-\sqrt{1+h^{2}}\right)^{n} .
$$

Set $y_{0}=1$ and leave y_{1} arbitrary for the moment and solve for C_{1} and C_{2}.

$$
y_{0}=1=C_{1}+C_{2}, \quad y_{1}=C_{1}\left(-h+\sqrt{1+h^{2}}\right)+C_{2}\left(-h-\sqrt{1+h^{2}}\right) .
$$

Then

$$
C_{1}=\frac{1}{2}+\frac{y_{1}+h}{2 \sqrt{1+h^{2}}}, \quad C_{2}=\frac{1}{2}-\frac{y_{1}+h}{2 \sqrt{1+h^{2}}} .
$$

Inserting this result, we get

$$
y_{n}=\left(\frac{1}{2}+\frac{y_{1}+h}{2 \sqrt{1+h^{2}}}\right)\left(-h+\sqrt{1+h^{2}}\right)^{n}+\left(\frac{1}{2}-\frac{y_{1}+h}{2 \sqrt{1+h^{2}}}\right)\left(-h-\sqrt{1+h^{2}}\right)^{n} .
$$

If we compute the Taylor series of the function $f(h)=\sqrt{1+h^{2}}$ about $h=0$, we get (since $\left.f^{\prime}(0)=0\right)$ that

$$
f(h)=f(0)+h f^{\prime}(0)+O\left(h^{2}\right)=1+O\left(h^{2}\right)
$$

Hence, for h sufficiently small, the term $-h+\sqrt{1+h^{2}}=1-h+O\left(h^{2}\right)<1$ and so $(-h+$ $\left.\sqrt{1+h^{2}}\right)^{n} \rightarrow 0$ as $n \rightarrow \infty$. However, $\left|-h-\sqrt{1+h^{2}}\right|=1+h+O\left(h^{2}\right)>1$, so that unless we choose y_{1} so that $\frac{1}{2}-\frac{y_{1}+h}{2 \sqrt{1+h^{2}}}=0, \lim _{n \rightarrow \infty}\left|y_{n}\right|=\infty$.

The above is an example of numerical instability. The true solution $e^{-x} \rightarrow 0$ as $x=n h \rightarrow$ ∞, while for fixed h the approximate solution $\rightarrow \infty$ as $n \rightarrow \infty$.

However, if we consider the convergence of the sequence $\left\{y_{n}^{h}\right\}$ as $h \rightarrow 0, n \rightarrow \infty$ and $x=n h$ and make the assumption that $\lim _{h \rightarrow 0} y_{1}^{h}=y_{0}=1$, then

$$
\lim _{h \rightarrow 0}\left(\frac{1}{2}+\frac{y_{1}+h}{2 \sqrt{1+h^{2}}}\right)=1, \quad \lim _{h \rightarrow 0}\left(\frac{1}{2}-\frac{y_{1}+h}{2 \sqrt{1+h^{2}}}\right)=0 .
$$

Furthermore, for $x=n h$,

$$
\lim _{h \rightarrow 0, n \rightarrow \infty}\left(-h+\sqrt{1+h^{2}}\right)^{n}=\lim _{h \rightarrow 0}\left[\left(-h+\sqrt{1+h^{2}}\right)^{1 / h}\right]^{x} .
$$

Let $y=\lim _{h \rightarrow 0}\left[\left(-h+\sqrt{1+h^{2}}\right)^{1 / h}\right]$. Then

$$
\ln y=\lim _{h \rightarrow 0}\left[\ln \left(-h+\sqrt{1+h^{2}}\right) / h\right]=\lim _{h \rightarrow 0} \frac{\frac{2 h}{2 \sqrt{1+h^{2}}}-1}{\sqrt{1+h^{2}}-h}=-1 .
$$

Hence, $\ln y=-1$ so $y=e^{-1}$. Then

$$
\lim _{h \rightarrow 0, n \rightarrow \infty} C_{1}\left(-h+\sqrt{1+h^{2}}\right)^{n}=e^{-x}
$$

Thus, the first part of the solution of the difference equation gives an approximation to the true solution of the differential equation. One can easily show that $\left|\left(-h-\sqrt{1+h^{2}}\right)^{n}\right| \leq e^{x}$. Hence, the second term is converging to zero, so the approximate solution is converging to the true solution.

To summarize, one root of the characteristic polynomial gives a solution that approximates the true solution. A second root gives a parasitic solution which for fixed h eventually blows up to give a bad overall approximation. Since the method converges, for any x and ϵ, one can find a value of h such that $\left|y_{n}^{h}-e^{-x}\right|<\epsilon$. However, since the parasitic solution grows like e^{x}, this h would have to be impractically small for any reasonable size x.

