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2. Polynomial Interpolation

2.1. Interpolation error. We now turn to an analysis of the error f(x̄) − Pn(x̄), for x̄ 6=
x0, . . . xn. For the moment, consider x̄ fixed, and let Pn+1 denote the polynomial of degree
≤ n+1 interpolating f(x) at x0, x1, . . . , xn and x̄. Using the Newton form of the interpolating
polynomial, we know that

Pn+1(x) = Pn(x) + f [x0, . . . , xn, x̄]
n∏

j=0

(x− xj).

Since Pn+1(x̄) = f(x̄), we have by the above formula that

f(x̄) = Pn(x̄) + f [x0, . . . , xn, x̄]
n∏

j=0

(x̄− xj),

and so a representation of the error is given by

(2.1) f(x̄)− Pn(x̄) = f [x0, . . . , xn, x̄]
n∏

j=0

(x̄− xj).

We next find an equivalent expression for f [x0, . . . , xn, x̄], valid when f is sufficiently smooth.

Definition: Suppose r is a non-negative integer. Then f is a function in Cr[a, b] if f and
its first r derivatives are continuous on [a, b]. So C0[a, b] denotes the space of continuous
functions on [a, b] and we shall use C−1[a, b] to denote functions which may be discontinuous
on [a, b].

Lemma 1. Let f ∈ Ck[a, b] and x0, . . . , xk be distinct points in [a, b]. The there exists a
point ξ ∈ (a, b) such that f [x0, x1, . . . , xk] = f (k)(ξ)/k!.

Proof. Let Pk(x) denote the polynomial of degree ≤ k interpolating f at x0, . . . , xk and
define ek(x) = f(x) − Pk(x). Observe first that ek(x) has at least k + 1 distinct zeroes at
the points x0, . . . , xk. Since f and therefore ek is differentiable on (a, b), we can use Rolle’s
theorem to conclude that between each two adjacent zeroes of ek(x), there exists at least
one zero of e′k(x). Hence e′k(x) has at least k zeroes in (a, b). Since f and therefore ek(x) is
k times differentiable in (a, b), we can continue this argument to conclude that e′′k(x) has at

least k − 1 zeroes in (a, b), and finally that e
(k)
k has at least one zero in (a, b). If we denote

that zero by the point ξ, then

0 = e
(k)
k (ξ) = f (k)(ξ)− P

(k)
k (ξ).

Now by formula (1.2),

Pk(x) =
k∑

i=0

f [x0, . . . , xi]
i−1∏

i=0

(x− xj) = f [x0, . . . , xk]x
k + polynomial of degree < k.

Hence P
(k)
k (x) = f [x0, . . . , xk]k! for all x and so f [x0, . . . , xk] = f (k)(ξ)/k! for some ξ ∈

(a, b). �
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Combining Lemma (1) with the representation of the interpolation error given by formula
(2.1), we get the following result.

Theorem 1. Suppose that f ∈ Cn+1[a, b] and that Pn(x) is a polynomial of degree ≤ n that
interpolates f at the n + 1 distinct points x0, . . . , xn ∈ (a, b). Then for all x ∈ [a, b], there
exists a point ξ ∈ (a, b) (depending on x) such that

f(x)− Pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏

j=0

(x− xj).

Proof. If x is equal to any of the interpolation points xj, then the equation holds since
both sides are zero. If x is not equal to any of the interpolation points, we have from the
representation of the error given by (2.1) with x̄ = x, that

f(x)− Pn(x) = f [x0, . . . , xn, x]
n∏

j=0

(x− xj).

Since the n + 2 points x0, . . . , xn, x are all distinct, we can apply Lemma (1) to conclude
that f [x0, . . . , xn, x] = f (n+1)(ξ)/(n+ 1)! for some ξ ∈ (a, b) (depending on x). Substituting
this result gives the theorem. �

Note that since ξ is not known explicitly, this formula can not be used to find the actual
error. This is not surprising, since f can take on any value at non-interpolation points.
However, the theorem can be used to find an upper bound on the interpolation error if we
have more information about the way the derivatives of f behave. The following results
follow directly from the theorem.

Corollary 1. Suppose the conditions of Theorem (1) are satisfied. If maxa≤ξ≤b |f
(n+1)(ξ)| ≤

Mn+1, then

(2.2) |f(x)− Pn(x)| ≤
Mn+1

(n+ 1)!
|(x− x0)(x− x1) · · · (x− xn)|, for all x ∈ [a, b]

and

(2.3) max
a≤x≤b

|f(x)− Pn(x)| ≤
Mn+1

(n+ 1)!
max
a≤x≤b

|(x− x0)(x− x1) · · · (x− xn)|.

Let us now consider an application of these results to find a bound on the error in linear
interpolation. Recall that the linear polynomial interpolating f(x) at x0 and x1 is given by
P1(x) = f(x0) + f [x0, x1](x− x0). If x ∈ [x0, x1] and maxx0≤ξ≤x1

|f ′′(ξ)| ≤ M2, then we have
by (2.2) with a = x0, b = x1 that

|f(x)− P1(x)| ≤
M2

2
|(x− x0)(x− x1)|, for all x ∈ [a, b]

and by (2.3) that

max
x0≤x≤x1

|f(x)− P1(x)| ≤
M2

2
max

x0≤x≤x1

|(x− x0)(x− x1)| ≤
M2

8
(x1 − x0)

2,

since the maximum occurs at the midpoint (x0 + x1)/2.
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2.2. Divided differences for repeated points. Recall

f [x0, x1, . . . , xk] =
k∑

i=0

f(xi)∏n
j=0

j 6=i

(xi − xj)
.

Note that f [y0, . . . , yk] = f [x0, . . . , xk] if y0, . . . , yk is any reordering of x0, . . . , xk. So far,
f [x0, . . . , xk] has only been defined when the points x0, . . . , xk are distinct. We now wish to
extend the definition to include the case of repeated points.

Example: k = 1. f [x0, x1] = [f(x1) − f(x0)]/(x1 − x0), x1 6= x0. If f ∈ C1, then by Taylor
series, f(x1) = f(x0) + f ′(c)(x1 − x0) for some c between x0 and x1. Hence, f [x0, x1] =
f ′(c) → f ′(x0) as x1 → x0. So we define f [x0, x1] = f ′(x0) when x0 = x1. In general, define

f [x0, . . . , xk] =
f (k)(y)

k!
, if x0 = x1 = · · · = xk = y.

With this interpretation, we can still use the Newton formula

Pn(x) =
n∑

i=0

f [x0, . . . , xi]
i−1∏

j=0

(x− xj)

to describe the polynomial of degree ≤ n interpolating f(x) at x0, . . . , xn, even when the
points x0, . . . , xn are not necessarily distinct. The error is still given by the formula

f(x)− Pn(x) = f [x0, . . . , xn, x]
n∏

j=0

(x− xj),

where by the interpolating polynomial we now mean that if the point z appears k+ 1 times
among x0, . . . , xn, then

P (j)
n (z) = f (j)(z), j = 0, . . . , k.

To see why this is the proper generalization of the divided difference formula in the general
case, note that the polynomial

Pk(x) =
k∑

j=0

f (j)(x0)

j!
(x− x0)

j

satisfies P
(j)
k (x0) = f (j)(x0), j = 0, . . . , k, so Pk(x) will be the interpolating polynomial when

all the interpolation points are the same. The Newton formula in this case would be

Pk(x) =
k∑

j=0

f [x0, . . . , x0](x− x0)
j,

where x0 appears j + 1 times in the expression f [x0, . . . , x0] above. Hence, if we want the
Newton formula to give the interpolating polynomial, we need to use the definition of divided
differences given above for equally spaced points.

Furthermore, if f ∈ Cn+1(a, b) and x0, . . . , xn, x ∈ [a, b], then one can show that

f [x0, . . . , xn, x] =
f (n+1)(ξ)

(n+ 1)!
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for some ξ satisfying min(x0, . . . , xn, x) ≤ ξ ≤ max(x0, . . . , xn, x).

Example: f(x) = ln x. Calculate f(1.5) by cubic interpolation using the data: f(1) = 0,
f ′(1) = 1, f(2) = 0.693147, f ′(2) = 0.5. Take x0 = 1, x1 = 1, x2 = 2, x3 = 2.

Table 2

Divided difference table

xk f(xk) f[,] f[,,] f[,,,]
1 0

1
1 0 −.306853

.693147 .113706
2 .693147 −0.193147

.5
2 .693147

Using the divided difference table, we get

P3(x) = f(1) + f [1, 1](x− 1) + f [1, 1, 2](x− 1)2 + f [1, 1, 2, 2](x− 1)2(x− 2)

= 0 + 1(x− 1) + (−.306853)(x− 1)2 + (.113706)(x− 1)2(x− 2).

So P3(1.5) = .409074.

From the error formula, we have ln(x)− P3(x) = f (4)(ξ)(x− 1)2(x− 2)2/4!. Hence,

| ln(1.5)− P3(1.5)| ≤
1

4!
max
1≤ξ≤2

6

ξ4
(.5)4 =

1

64
= 0.015624

The actual error is .00361.


