2. Polynomial Interpolation

2.1. Interpolation error. We now turn to an analysis of the error $f(\bar{x})-P_{n}(\bar{x})$, for $\bar{x} \neq$ $x_{0}, \ldots x_{n}$. For the moment, consider \bar{x} fixed, and let P_{n+1} denote the polynomial of degree $\leq n+1$ interpolating $f(x)$ at $x_{0}, x_{1}, \ldots, x_{n}$ and \bar{x}. Using the Newton form of the interpolating polynomial, we know that

$$
P_{n+1}(x)=P_{n}(x)+f\left[x_{0}, \ldots, x_{n}, \bar{x}\right] \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Since $P_{n+1}(\bar{x})=f(\bar{x})$, we have by the above formula that

$$
f(\bar{x})=P_{n}(\bar{x})+f\left[x_{0}, \ldots, x_{n}, \bar{x}\right] \prod_{j=0}^{n}\left(\bar{x}-x_{j}\right)
$$

and so a representation of the error is given by

$$
\begin{equation*}
f(\bar{x})-P_{n}(\bar{x})=f\left[x_{0}, \ldots, x_{n}, \bar{x}\right] \prod_{j=0}^{n}\left(\bar{x}-x_{j}\right) \tag{2.1}
\end{equation*}
$$

We next find an equivalent expression for $f\left[x_{0}, \ldots, x_{n}, \bar{x}\right]$, valid when f is sufficiently smooth.
Definition: Suppose r is a non-negative integer. Then f is a function in $C^{r}[a, b]$ if f and its first r derivatives are continuous on $[a, b]$. So $C^{0}[a, b]$ denotes the space of continuous functions on $[a, b]$ and we shall use $C^{-1}[a, b]$ to denote functions which may be discontinuous on $[a, b]$.

Lemma 1. Let $f \in C^{k}[a, b]$ and x_{0}, \ldots, x_{k} be distinct points in $[a, b]$. The there exists a point $\xi \in(a, b)$ such that $f\left[x_{0}, x_{1}, \ldots, x_{k}\right]=f^{(k)}(\xi) / k$!.

Proof. Let $P_{k}(x)$ denote the polynomial of degree $\leq k$ interpolating f at x_{0}, \ldots, x_{k} and define $e_{k}(x)=f(x)-P_{k}(x)$. Observe first that $e_{k}(x)$ has at least $k+1$ distinct zeroes at the points x_{0}, \ldots, x_{k}. Since f and therefore e_{k} is differentiable on (a, b), we can use Rolle's theorem to conclude that between each two adjacent zeroes of $e_{k}(x)$, there exists at least one zero of $e_{k}^{\prime}(x)$. Hence $e_{k}^{\prime}(x)$ has at least k zeroes in (a, b). Since f and therefore $e_{k}(x)$ is k times differentiable in (a, b), we can continue this argument to conclude that $e_{k}^{\prime \prime}(x)$ has at least $k-1$ zeroes in (a, b), and finally that $e_{k}^{(k)}$ has at least one zero in (a, b). If we denote that zero by the point ξ, then

$$
0=e_{k}^{(k)}(\xi)=f^{(k)}(\xi)-P_{k}^{(k)}(\xi)
$$

Now by formula (1.2),

$$
P_{k}(x)=\sum_{i=0}^{k} f\left[x_{0}, \ldots, x_{i}\right] \prod_{i=0}^{i-1}\left(x-x_{j}\right)=f\left[x_{0}, \ldots, x_{k}\right] x^{k}+\text { polynomial of degree }<k .
$$

Hence $P_{k}^{(k)}(x)=f\left[x_{0}, \ldots, x_{k}\right] k$! for all x and so $f\left[x_{0}, \ldots, x_{k}\right]=f^{(k)}(\xi) / k$! for some $\xi \in$ (a, b).

Combining Lemma (1) with the representation of the interpolation error given by formula (2.1), we get the following result.

Theorem 1. Suppose that $f \in C^{n+1}[a, b]$ and that $P_{n}(x)$ is a polynomial of degree $\leq n$ that interpolates f at the $n+1$ distinct points $x_{0}, \ldots, x_{n} \in(a, b)$. Then for all $x \in[a, b]$, there exists a point $\xi \in(a, b)$ (depending on x) such that

$$
f(x)-P_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Proof. If x is equal to any of the interpolation points x_{j}, then the equation holds since both sides are zero. If x is not equal to any of the interpolation points, we have from the representation of the error given by (2.1) with $\bar{x}=x$, that

$$
f(x)-P_{n}(x)=f\left[x_{0}, \ldots, x_{n}, x\right] \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

Since the $n+2$ points x_{0}, \ldots, x_{n}, x are all distinct, we can apply Lemma (1) to conclude that $f\left[x_{0}, \ldots, x_{n}, x\right]=f^{(n+1)}(\xi) /(n+1)$! for some $\xi \in(a, b)$ (depending on $\left.x\right)$. Substituting this result gives the theorem.

Note that since ξ is not known explicitly, this formula can not be used to find the actual error. This is not surprising, since f can take on any value at non-interpolation points. However, the theorem can be used to find an upper bound on the interpolation error if we have more information about the way the derivatives of f behave. The following results follow directly from the theorem.
Corollary 1. Suppose the conditions of Theorem (1) are satisfied. If $\max _{a \leq \xi \leq b}\left|f^{(n+1)}(\xi)\right| \leq$ M_{n+1}, then

$$
\begin{equation*}
\left|f(x)-P_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!}\left|\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\right|, \quad \text { for all } x \in[a, b] \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{a \leq x \leq b}\left|f(x)-P_{n}(x)\right| \leq \frac{M_{n+1}}{(n+1)!} \max _{a \leq x \leq b}\left|\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)\right| \tag{2.3}
\end{equation*}
$$

Let us now consider an application of these results to find a bound on the error in linear interpolation. Recall that the linear polynomial interpolating $f(x)$ at x_{0} and x_{1} is given by $P_{1}(x)=f\left(x_{0}\right)+f\left[x_{0}, x_{1}\right]\left(x-x_{0}\right)$. If $x \in\left[x_{0}, x_{1}\right]$ and $\max _{x_{0} \leq \xi \leq x_{1}}\left|f^{\prime \prime}(\xi)\right| \leq M_{2}$, then we have by (2.2) with $a=x_{0}, b=x_{1}$ that

$$
\left|f(x)-P_{1}(x)\right| \leq \frac{M_{2}}{2}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right|, \quad \text { for all } x \in[a, b]
$$

and by (2.3) that

$$
\max _{x_{0} \leq x \leq x_{1}}\left|f(x)-P_{1}(x)\right| \leq \frac{M_{2}}{2} \max _{x_{0} \leq x \leq x_{1}}\left|\left(x-x_{0}\right)\left(x-x_{1}\right)\right| \leq \frac{M_{2}}{8}\left(x_{1}-x_{0}\right)^{2},
$$

since the maximum occurs at the midpoint $\left(x_{0}+x_{1}\right) / 2$.

2.2. Divided differences for repeated points. Recall

$$
f\left[x_{0}, x_{1}, \ldots, x_{k}\right]=\sum_{i=0}^{k} \frac{f\left(x_{i}\right)}{\prod_{\substack{j=0 \\ j \neq i}}^{n}\left(x_{i}-x_{j}\right)} .
$$

Note that $f\left[y_{0}, \ldots, y_{k}\right]=f\left[x_{0}, \ldots, x_{k}\right]$ if y_{0}, \ldots, y_{k} is any reordering of x_{0}, \ldots, x_{k}. So far, $f\left[x_{0}, \ldots, x_{k}\right]$ has only been defined when the points x_{0}, \ldots, x_{k} are distinct. We now wish to extend the definition to include the case of repeated points.

Example: $k=1$. $f\left[x_{0}, x_{1}\right]=\left[f\left(x_{1}\right)-f\left(x_{0}\right)\right] /\left(x_{1}-x_{0}\right), x_{1} \neq x_{0}$. If $f \in C^{1}$, then by Taylor series, $f\left(x_{1}\right)=f\left(x_{0}\right)+f^{\prime}(c)\left(x_{1}-x_{0}\right)$ for some c between x_{0} and x_{1}. Hence, $f\left[x_{0}, x_{1}\right]=$ $f^{\prime}(c) \rightarrow f^{\prime}\left(x_{0}\right)$ as $x_{1} \rightarrow x_{0}$. So we define $f\left[x_{0}, x_{1}\right]=f^{\prime}\left(x_{0}\right)$ when $x_{0}=x_{1}$. In general, define

$$
f\left[x_{0}, \ldots, x_{k}\right]=\frac{f^{(k)}(y)}{k!}, \quad \text { if } x_{0}=x_{1}=\cdots=x_{k}=y
$$

With this interpretation, we can still use the Newton formula

$$
P_{n}(x)=\sum_{i=0}^{n} f\left[x_{0}, \ldots, x_{i}\right] \prod_{j=0}^{i-1}\left(x-x_{j}\right)
$$

to describe the polynomial of degree $\leq n$ interpolating $f(x)$ at x_{0}, \ldots, x_{n}, even when the points x_{0}, \ldots, x_{n} are not necessarily distinct. The error is still given by the formula

$$
f(x)-P_{n}(x)=f\left[x_{0}, \ldots, x_{n}, x\right] \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

where by the interpolating polynomial we now mean that if the point z appears $k+1$ times among x_{0}, \ldots, x_{n}, then

$$
P_{n}^{(j)}(z)=f^{(j)}(z), \quad j=0, \ldots, k .
$$

To see why this is the proper generalization of the divided difference formula in the general case, note that the polynomial

$$
P_{k}(x)=\sum_{j=0}^{k} \frac{f^{(j)}\left(x_{0}\right)}{j!}\left(x-x_{0}\right)^{j}
$$

satisfies $P_{k}^{(j)}\left(x_{0}\right)=f^{(j)}\left(x_{0}\right), j=0, \ldots, k$, so $P_{k}(x)$ will be the interpolating polynomial when all the interpolation points are the same. The Newton formula in this case would be

$$
P_{k}(x)=\sum_{j=0}^{k} f\left[x_{0}, \ldots, x_{0}\right]\left(x-x_{0}\right)^{j},
$$

where x_{0} appears $j+1$ times in the expression $f\left[x_{0}, \ldots, x_{0}\right]$ above. Hence, if we want the Newton formula to give the interpolating polynomial, we need to use the definition of divided differences given above for equally spaced points.

Furthermore, if $f \in C^{n+1}(a, b)$ and $x_{0}, \ldots, x_{n}, x \in[a, b]$, then one can show that

$$
f\left[x_{0}, \ldots, x_{n}, x\right]=\frac{f^{(n+1)}(\xi)}{(n+1)!}
$$

for some ξ satisfying $\min \left(x_{0}, \ldots, x_{n}, x\right) \leq \xi \leq \max \left(x_{0}, \ldots, x_{n}, x\right)$.
Example: $f(x)=\ln x$. Calculate $f(1.5)$ by cubic interpolation using the data: $f(1)=0$, $f^{\prime}(1)=1, f(2)=0.693147, f^{\prime}(2)=0.5$. Take $x_{0}=1, x_{1}=1, x_{2}=2, x_{3}=2$.

TABLE 2
Divided difference table

x_{k}	$f\left(x_{k}\right)$	$\mathrm{f}[]$,	$\mathrm{f}[,]$,	$\mathrm{f}[,,]$,
1	0	1		
1	0		-.306853	
2	.693147	.693147		.113706
2	.693147		-0.193147	

Using the divided difference table, we get

$$
\begin{aligned}
P_{3}(x)=f(1)+f[1,1] & (x-1)+f[1,1,2](x-1)^{2}+f[1,1,2,2](x-1)^{2}(x-2) \\
& =0+1(x-1)+(-.306853)(x-1)^{2}+(.113706)(x-1)^{2}(x-2) .
\end{aligned}
$$

So $P_{3}(1.5)=.409074$.
From the error formula, we have $\ln (x)-P_{3}(x)=f^{(4)}(\xi)(x-1)^{2}(x-2)^{2} / 4$!. Hence,

$$
\left|\ln (1.5)-P_{3}(1.5)\right| \leq \frac{1}{4!} \max _{1 \leq \xi \leq 2} \frac{6}{\xi^{4}}(.5)^{4}=\frac{1}{64}=0.015624
$$

The actual error is .00361 .

