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13.5.3. Convergence of multistep methods. Definition: The linear multistep method defined
by the formula

(13.1) yn+1 =

p
∑

i=0

aiyn−i + h

p
∑

i=−1

bifn−i,

is said to be convergent, if for all initial value problems y′ = f(x, y), y(a) = η, where f
satisfies hypotheses (A) and (B) of Theorem 10 (i.e, f defined and continuous and satisfies
a Lipschitz condition), we have that

(i) lim
h→0,n→∞

nh=x−a

yhn = y(xn)

holds for all x ∈ [a, b] and all solutions {yhn} of the difference equation (13.1) having starting
values yhk , k = 0, . . . , p satisfying (ii) limh→0 y

h
k = η, k = 0, . . . , p.

Note that this definition requires that (i) be satisfied not only for the sequence {yhn}
defined with exact starting values y(a + kh) (for these (ii) is certainly satisfied), but also
for all sequences whose starting values tend to the correct starting value η as h → 0. This
more stringent condition is imposed, since in practice it is almost never possible to start a
computation with exact values.

Remark: To be a convergent method, the approximate solution must converge to the true
solution for any problem of a certain class (i.e., f Lipschitz continuous in y). It is not enough
to have convergence for a particular problem.

13.5.4. Linear difference equations. One of the methods for analyzing multistep methods for
the approximation of ordinary differential equations involves the application of the method
to the model problem y′ = λy, where λ is a constant. For this simple problem, the equation
defining the numerical method becomes a linear difference equation. We now discuss the
solution of such equations.

Definition: A difference equation is a relationship of the form f(k, yk, yk−1, . . . , yk−N) = 0
between an independent variable k and an unknown sequence of values {yk}. A solution of a
difference equation is a sequence of numbers {yk} that satisfies f(k, yk, yk−1, . . . , yk−N) = 0
for all k in some set I of consecutive integers.

Example: f(k, yk, yk−1) = yk − yk−1 − 1 = 0. The solution is the sequence {yk}, where
yk = k + C, with C constant and I is the set of all integers.

Example: yk = qyk−1. The solution is the sequence {yk}, where yk = Cqk, where C is a
constant. In both cases, we obtain a family of solutions depending on the paramter C. If we
are given an initial condition such as y0 = A to determine C, then we have an initial value
problem for the difference equation.

Definition: The order of a difference equation is the difference between the largest and
smallest subscript (of y) appearing in the equation.
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Definition: A linear difference equation is a difference equation of the form:

a0(k)yk + a1(k)yk−1 + · · ·+ aN(k)yk−N = b(k),

where ai(k) and b(k) are functions only of k and do not depend on y.

Definition: A linear difference equation is called homogeneous if b(k) ≡ 0 for all k.

We now consider the solution of an Nth order linear homogeneous difference equation with
constant coefficients. Since both a0 and aN 6= 0, we take a0 = 1 (i.e., divide the equation by
a0 and relabel). Thus, the equation has the form

yk + a1yk−1 + · · ·+ aNyk−N = 0.

To solve this equation, we look for solutions of the form yk = zk, where z is a constant to
be determined. Then z satisfies

zk + a1z
k−1 + · · ·+ aNz

k−N = 0, i.e.,

zk−N [zN + a1z
N−1 + · · ·+ aN ] = 0.

This expression will be zero not only when z = 0 (the trivial solution), but also when z is a
root of

ρ(z) = zN + a1z
N−1 + · · ·+ aN = 0.

ρ(z) is called the characteristic polynomial of the difference equation.

Suppose we solve ρ(z) = 0 and find m distinct roots z1, . . . , zm, with pµ the multiplicity of
zµ. Then zkµ, kz

k
µ, . . . , k

pµ−1zkµ are also solutions of the difference equation. This gives us N
solutions of the difference equation, which turn out to be linearly independent. The general
solution of the difference equation is a linear combination of these solutions, i.e.,

yk =
m
∑

µ=1

pµ
∑

j=1

Cµjk
j−1zkµ.

Since we will assume that the coefficients of our difference equation are real, if z is a com-
plex root of ρ(z), the complex conjugate z̄ is also a root of ρ(z), with the same multiplicity,
i.e., if z = reiθ is a root, so is z̄ = re−iθ. Hence zk and z̄k are solutions of the difference
equation. The part of the general solution of the difference equation corresponding to these
solutions is Azk +Bz̄k, where A and B are complex. These may be written in terms of real
solutions using the following formulas:

Azk = Arkeiθk = Ark[cos(θk) + i sin(θk)], Bz̄k = Brke−iθk = Brk[cos(θk)− i sin(θk)],

where if z = x+ iy then r =
√

x2 + y2 and θ = tan−1(y/x). Hence,

Azk +Bz̄k = rk[(A+B) cos(θk) + i(A− B) sin(θk)]. = rk[a cos(θk) + b sin(θk)],

where a = A + B and b = i(A − B). Thus, in the formula for the general solution, we can
replace the linearly independent complex solutions zk and z̄k by the linearly independent
real solutions rk cos(θk) and rk sin(θk).

We obtain the general solution of a linear nonhomogeneous difference equation by adding
a particular solution to the general solution of the homogeneous difference equation. A
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particular solution can sometimes be found by the method of undetermined coefficients, i.e.,
by trying a solution of the form constant times the right hand side of the equation.

Example: Suppose an amount A is borrowed at an interest rate of i per payment period
and must be paid back in n payments of equal amounts S. Determine S in terms of A, i,
and n.

Let Pk be the principal outstanding after the kth payments. Then P0 = A and Pn = 0.
Now

Pk+1 = Pk + iPk − S = (1 + i)Pk − S.

The general solution of the homogenous equation is a(1 + i)k for any constant a. Since
the right hand side of the equation is constant, we look for a particular solution which is a
constant, say b. Then b = (1 + i)b − S, so b = S/i. Hence the general solution of the full
difference equation is given by Pk = a(1 + i)k + S/i. Applying the initial condition P0 = A,
we find that a = A−S/i. Hence, Pk = [A−S/i](1+ i)k +S/i. Finally, we determine S from
the condition that Pn = 0, i.e., [A− S/i](1 + i)n + S/i = 0. Hence,

S =
Ai(1 + i)n

(1 + i)n − 1
= A

i

1− (1 + i)−n
.

Theorem 12. A necessary condition for the convergence of linear multistep method is that

the method be consistent, i.e.,

1 =

p
∑

i=0

ai, 1 = −

p
∑

i=0

iai +

p
∑

i=−1

bi.

Proof. If the method is convergent, then it is convergent for the IVP y′ = 0, y(0) = 1, whose
exact solution is y(x) = 1. For this problem, the general linear multistep method becomes
yn+1 =

∑p

i=0
aiyn−i. Let the starting values y0, . . . yp be exact, i.e., equal to 1. Since the

method is convergent, we must have that yhn → 1 as h → 0, n → ∞, and nh = x. Hence,
letting n → ∞ in the expression yn+1 =

∑p

i=0
aiyn−i, we get 1 =

∑p

i=0
ai.

To establish the second equality, we consider the IVP y′ = 1, y(0) = 0, whose exact
solution is y(x) = x. The difference equation is now yn+1 =

∑p

i=0
aiyn−i + h

∑p

i=−1
bi.

Consider the sequence yn = nhA, n = 0, 1, . . . ,, where

A =

∑p

i=−1
bi

1 +
∑p

i=0
iai

.

We will first show that the sequence {yn} is a solution of the difference equation. To see
this, we compute

p
∑

i=0

aiyn−i + h

p
∑

i=−1

bi =

p
∑

i=0

ai(n− i)hA+ h

p
∑

i=−1

bi =

p
∑

i=0

ai(n− i)hA+ hA(1 +

p
∑

i=0

iai)

= hA+ hAn

p
∑

i=0

ai = (n+ 1)hA = yn+1,
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where we have used the first identity. We next observe that this sequence also satisfies the
condition that limh→0 yn = 0, n = 1, 2, . . . p. Since the method is convergent, yhn → x as
h → 0, n → ∞, and nh = x, i.e., nhA = x for nh = x. Hence A = 1, so the second equality
is established. �


