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13.5. Linear multistep methods. The general linear (p+ 1) step method has the form

yn+1 =

p
∑

i=0

aiyn−i + h

p
∑

i=−1

bifn−i,

where fn−i = f(xn−i, yn−i) and the ai and bi are constants.

Remarks: Any of the ais and bis may be zero, but we assume either ap or bp is not zero
(otherwise the method would not be a p+ 1 step method).

If b−1 = 0, then yn+1 is expressed as a linear combination of (computationally) known past
values yn, . . . , yn−p and thus is easily computed. Such formulas are called explicit or forward
integration formulas. If b−1 6= 0, then the formula is an implicit equation for yn+1, since yn+1

also appears on the right hand side. Such formulas are called implicit and must be solved
by an iterative procedure.

The methods are called linear because values of fn−i enter linearly. We do not assume
that fn−i is a linear function of yn−i.

13.5.1. Derivation. One way of deriving such formulas is through numerical integration.
Since y′ = f(x, y(x)), we have

y(xn+1)− y(xn) =

∫ xn+1

xn

f(x, y(x)) dx.

If we approximate the right hand side using the trapezoidal rule, i.e., replace f by a linear
interpolating polynomial and integrate, we get

y(xn+1)− y(xn) = (h/2)[f(xn+1, y(xn+1)) + f(xn, y(xn))]− (h3/12)f ′′(ξ, y(ξ))

= (h/2)[f(xn+1, y(xn+1)) + f(xn, y(xn))]− (h3/12)y′′′(ξ).

Omitting the error term, the resulting approximation scheme is:

yn+1 = yn + (h/2)[fn+1 + fn].

More generally, we can obtain linear multistep methods by replacing f(x, y(x)) by its inter-
polating polynomial using the points xn, xn−1, . . . , xn−p and then integrating between xn−j

and xn+1.

Recall that the Newton form of the interpolating polynomial interpolating g(x) at the
points xn, xn−1, . . . , xn−p is given by

P (x) =

p
∑

k=0

g[xn, . . . , xn−k]
k−1
∏

i=0

(x− xn−i) = g(xn) + g[xn, xn−1](x− xn)

+ g[xn, xn−1, xn−2](x− xn)(x− xn−1) + . . .+ g[xn, . . . , xn−p](x− xn) · · · (x− xn−p+1).
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In the above, we set
∏

−1
j=0 = 1. Setting g(x) = f(x, y(x)), we get

y(xn+1)− y(xn−j) =

∫ xn+1

xn−j

y′(x) dx =

∫ xn+1

xn−j

f(x, y(x)) dx

≈

p
∑

k=0

g[xn, . . . , xn−k]

∫ xn+1

xn−j

k−1
∏

i=0

(x− xn−i) dx.

We now examine some specific cases. For simplicity, we consider the case of equally spaced
points xi+1 − xi = h.

p = 0 : yn+1 = yn−j + (j + 1)hfn

j = 0 : yn+1 = yn + hfn (Euler’s method)

j = 1 : yn+1 = yn−1 + 2hfn (Midpoint rule)

When p = 1, we get

yn+1 = yn−j + h(j + 1)fn + f [xn, xn−1]

∫ xn+1

xn−j

(x− xn) dx

= yn−j + h(j + 1)fn + (1/2)f [xn−1, xn](h
2 − j2h2)

= yn−j + hfn[1 + j + (1/2)(1− j2)] + hfn−1(1/2)(j
2 − 1).

Hence, we obtain the methods:

j = 0 : yn+1 = yn + (3/2)hfn − (1/2)hfn−1,

j = 1 : yn+1 = yn−1 + 2hfn,

j = 2 : yn+1 = yn−2 + (3/2)hfn + (3/2)hfn−1.

All these methods are explicit methods. To get implicit methods, we use the interpolating
polynomial based on the points xn+1, xn, xn−1, . . . , xn−p+1 and repeat this procedure.

Multistep methods can also be derived by using Taylor series expansions. In fact, we have
already seen how Euler’s method can be derived in this way. To get the midpoint rule, we
use the expansions

y(xn + h) = y(xn) + hy′(xn) + (h2/2)y′′(xn) + (h3/6)y′′′(ξ+n ),

y(xn − h) = y(xn)− hy′(xn) + (h2/2)y′′(xn)− (h3/6)y′′′(ξ−n ).

Subtracting these equations, we obtain:

y(xn + h)− y(xn − h) = 2hy′(xn) + (h3/6)y′′′(ξ+n ) + (h3/6)y′′′(ξ−n ).

Neglecting higher order terms, we get the midpoint rule yn+1 = yn−1 + 2hf(xn, yn).
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13.5.2. Order, consistency, error constant, and local truncation error. Associated with a
given linear multistep method, we define a linear difference operator L by

L[y(x);h] = y(x+ h)−

p
∑

i=0

aiy(x− ih)− h

p
∑

i=−1

biy
′(x− ih).

Expanding y(x+ ih) and y′(x+ ih) in a Taylor series about x and collecting terms gives

L[y(x);h] = C0y(x) + C1hy
′(x) + · · ·+ Cqh

qy(q)(x) + · · · ,

where the Ci are constants. More specifically, we have

L[y(x);h] = [1−

p
∑

i=0

ai]y(x) +
∑

j

y(j)(x)

[

hj

j!
−

p
∑

i=0

ai(−i)j
hj

j!
−

p
∑

i=−1

bi(−i)j−1 hj

(j − 1)!

]

.

Hence,

C0 = 1−

p
∑

i=0

ai, C1 = 1−

p
∑

i=0

ai(−i)−

p
∑

i=−1

bi,

Cj =
1

j!

[

1−

p
∑

i=0

ai(−i)j − j

p
∑

i=−1

bi(−i)j−1

]

.

Definition: The linear difference operator L and associated linear multistep method are
said to be of order r if C0 = C1 = · · · = Cr = 0 and Cr+1 6= 0. Then Cr+1 is called the error
constant.

Note that L will have order r if and only if the multistep method is exact for all polynomials
of degree ≤ r, but not for polynomials of degree r + 1, i.e., L[xq;h] = 0, q = 0, . . . , r,
L[xr+1;h] 6= 0. Now

L[xq;h] =

q
∑

j=0

Cj

dj

dxj
(xq)hj

= Cqq!h
q + · · ·+ Cjq(q − 1) · · · (q − j + 1)xq−jhq−1 + · · ·+ C1qx

q−1h+ C0x
q.

Hence if L[xq;h] = 0, q = 0, . . . , r, then q = 0 implies C0 = 0, q = 1 implies C1 = 0, and
finally q = r implies Cr = 0.

Definition: A linear multistep method is consistent if it has order r ≥ 1, i.e., if it is exact
for linear polynomials, i.e., if

p
∑

i=0

ai = 1,

p
∑

i=0

ai(−i) +

p
∑

i=−1

bi = 1.

If a linear multistep method has order r, then

L[xr+1;h] = Cr+1(r + 1)!hr+1, so Cr+1 = L[xr+1;h]/[(r + 1)!hr+1].

Definition: The local truncation error in going from xn to xn+1 is defined to be L[y(xn);h].
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If the method is of order r, then

L[y(xn);h] = Cr+1h
r+1y(r+1)(xn) +O(hr+2).

The first term on the right side of the equation above is called the principle local truncation
error.

To compute the local truncation error for methods defined by numerical integration, we
recall that using the error formula for polynomial interpolation and again setting g(x) =
f(x, y(x)), we get

y(xn+1)− y(xn−j) =

∫ xn+1

xn−j

y′(x) dx =

∫ xn+1

xn−j

f(x, y(x)) dx

=

p
∑

k=0

g[xn, . . . , xn−k]

∫ xn+1

xn−j

k−1
∏

i=0

(x− xn−i) dx+

∫ xn+1

xn−j

g[xn, . . . , xn−p, x]

p
∏

i=0

(x− xn−i) dx.

Hence,

L[y(xn);h] =

∫ xn+1

xn−j

g[xn, . . . , xn−p, x]

p
∏

i=0

(x− xn−i) dx.

Example: Consider the case j = 0. Then
p
∏

i=0

(x− xn−i) = (x− xn) · · · (x− xn−p) ≥ 0

for x ∈ [xn, xn+1]. Hence

L[y(xn);h] = g[xn, . . . , xn−p, η]

∫ xn+1

xn

p
∏

i=0

(x− xn−i) dx

=
g(p+1)(ξ)

(p+ 1)!

∫ xn+1

xn

p
∏

i=0

(x− xn−i) dx =
y(p+2)(ξ)

(p+ 1)!

∫ xn+1

xn

p
∏

i=0

(x− xn−i) dx.

When p = 0, L[y(xn);h] = h2y(2)(ξ)/2. This is Euler’s method. When p = 1, we get

L[y(xn);h] =
y(3)(ξ)

2!

∫ xn+1

xn

(x− xn)(x− xn−1) dx

=
y(3)(ξ)

2!

∫ xn+1

xn

[(x− xn)
2 + h(x− xn)] dx =

5h3

12
y(3)(ξ).


