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13. Numerical solution of Ordinary Differential Equations: Background

Consider the initial value problem (IVP) for a first order ordinary differential equation:

dy/dx = f(x, y), y(x0) = y0.

The following theorem gives sufficient conditions for existence and uniqueness of a solution.

Theorem 10. Let f(x, y) satisfy the following conditions:

(A) f(x, y) is defined and continuous in the strip x0 ≤ x ≤ b, −∞ < y < ∞, where x0

and b are finite.

(B) There exists a constant L such that for any x ∈ [x0, b] and any two numbers y and y∗,
|f(x, y)− f(x, y∗)| ≤ L|y − y∗|.

Then given any number y0, there exists exactly one function y(x) satisfying: (i) y(x)
is continuous and differentiable on [x0, b], (ii) y′(x) = f(x, y(x)), x ∈ [x0, b], and (iii)
y(x0) = y0, i.e., the IVP has a unique solution.

It is also possible to view y as a vector with N components, so that the IVP represents a
first order system of odes. One way to treat higher order odes is to reduce them to a first
order system by introducing additional variables:

Example: d2y/dx2 = f(x, y, dy/dx). Set z = dy/dx. Then dz/dx = f(x, y, z) and we
obtain the first order system:

d

dx

(

y
z

)

=

(

z
f(x, y, z

)

=

(

f1(x, y, z)
f2(x, y, z)

)

.

13.1. Euler’s method. Our numerical schemes will seek approximations to the solution
y(x) at a sequence of points xi, i.e., we will approximate y(xi) by a number yi. We begin by
discussing the simplest method, i.e., Euler’s method. Set y0 = y(x0) and define

yn+1 = yn + hnf(xn, yn), n = 0, 1, . . . ,

where hn = xn+1 − xn.

One motivation of this method is that we have approximated the derivative (dy/dx)(xn)
by the forward difference approximation (y(xn+1)− y(xn))/(xn+1 − xn) and so:

y(xn+1) ≈ y(xn) + hnf(xn, y(xn)).

We then define our approximations yn as the value that restores equality, i.e., yn+1 = yn +
hnf(xn, yn).

Another motivation for the method is to expand the solution in a Taylor series expansion
and neglect higher order terms, i.e.,

y(xn + hn) = y(xn) + hny
′(xn) +O(h2

n)

= y(xn) + hnf(xn, y(xn)) +O(h2
n) ≈ y(xn) + hnf(xn, y(xn)).
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Example: y′ = y y(0) = 1. Then Euler’s method, using a constant step size hn = h,
is: yn+1 = yn + hyn = (1 + h)yn. Hence y0 = 1, y1 = 1 + h, y2 = (1 + h)y1 = (1 + h)2, and
yn = (1 + h)n.

We next consider the convergence of Euler’s method. Expanding the solution y(x) in a
Taylor series, we have

y(xn+1) = y(xn) + hnf(xn, y(xn)) + (h2
n/2)y

′′(ξn), xn ≤ ξn ≤ xn+1.

Neglecting any roundoff errors, the approximation given by Euler’s method satisfies:

yn+1 = yn + hnf(xn, yn).

Let en = y(xn)− yn. Note e0 = 0. Subtracting equations, we get

en+1 = en + hn[f(xn, y(xn))− f(xn, yn)] + (h2
n/2)y

′′(ξn),

Hence

|en+1| ≤ |en|+ hn|f(xn, y(xn))− f(xn, yn)|+ (h2
n/2)|y

′′(ξn)|

≤ |en|+ hnLen + h2
nM2/2 ≤ (1 + hnL)|en|+ h2

nM2/2,

where we assume that max |y′′(x)| ≤ M2. Consider the case when hn = h for all n. Then

|e1| ≤ h2M2/2, |e2| ≤ (1 + hL)|e1|+ h2M2/2 ≤ [1 + (1 + hL)]h2M2/2,

|e3| ≤ (1 + hL)|e2|+ h2M2/2 ≤ [1 + (1 + hL) + (1 + hL)2]h2M2/2.

Using the fact that
∑n−1

i=0 ri = (1− rn)/(1− r), we get

|en| ≤ [1 + (1 + hL) + (1 + hL)2 + · · · (1 + hL)n−1]h2M2/2 ≤ [(1 + hL)n − 1]hM2/(2L).

Observing that ex = 1 + x + eξx2/2 ≥ 1 + x for all x, we see that 1 + hL ≤ ehL and hence
(1 + hL)n ≤ enhL = e(xn−x0)L. Thus, we get the error estimate:

|en| ≤
hM2

2L
[e(xn−x0)L − 1],

so the error bound is O(h). This bound is quite pessimistic and not a realistic way to
determine a value of h to guarantee a given accuracy. It also requires a bound on y′′.

We now consider what this result says about convergence of Euler’s method, and first
what we mean by convergence in this context.

Let x be a point in the interval [x0, b] and let y(x) denote the true solution of the IVP at
the point x. For each value of the step size h, we will have an approximation to y(x) that
we denote by yhn, where n will be determined by the equation x − x0 = nh. Thus, as h is
decreased, the value of n for which yn denotes the approximation to y(x) will also change.
So for convergence, we want:

lim
h→0

n→∞

nh=x

yhn = y(x).

Example: For x0 = 0, x = 1/2, and the sequence h = 1/4, 1/8, 1/16, 1/32, we look for the

convergence of y
1/4
2 , y

1/8
4 , y

1/16
8 , y

1/32
16 .
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Suppose in the error estimate for Euler’s method, we keep xn = x fixed, i.e., we choose n
so that nh = x− x0 and let h → 0. Then

|y(x)− yhn| ≤
hM2

2L
[e(x−x0)L − 1] =⇒ lim

h→0

n→∞

nh=x

|y(x)− yhn| = 0,

so we have converence of the method as h → 0.

13.2. Taylor series methods. Consider the Taylor series of y(x), the solution of the IVP,
about x = xn:

y(xn + h) = y(xn) + hy′(xn) +
h2

2
y(2)(xn) + · · ·+

hk

k!
y(k)(xn) +

hk+1

(k + 1)!
y(k+1)(ξ).

Now y′(x) = f(x, y(x)), so

y′′(x) = f ′(x, y(x)) =
d

dx
f(x, y(x)) = fx(x, y(x)) + fy(x, y(x))

dy

dx
.

In general,

y(k)(x) = f (k−1)(x, y(x)) =
d

dx
f (k−2)(x, y(x)) = f (k−2)

x (x, y(x)) + f (k−2)
y (x, y(x))

dy

dx
.

Hence, if y(xn) were known, we could compute an approximation to y(xn + h) by using the
truncated Taylor series:

y(xn + h) ≈ y(xn) + hf(xn, y(xn)) +
h2

2
f ′(xn, y(xn)) + · · ·+

hk

k!
f (k−1)(xn, y(xn)),

i.e., if we denote by yn the approximation to y(xn), we can define the Taylor algorithm of
order k as the sequence of computations

yn+1 = yn + hTk(xn, yn), n = 0, 1, . . . ,

where

Tk(x, y) = f(x, y) +
h

2
f ′(x, y) + · · ·+

hk−1

k!
f (k−1)(x, y).

Note: Euler’s method is the Taylor algorithm of order 1.

Example: We wish to solve the IVP y′ = 1/x3−y/x−y2, y(1) = 2 by the Taylor algorithm
of order 2. Now

f(x, y) =
1

x3
−

y

x
− y2

and

f ′(x, y) = fx(x, y) + fy(x, y)f(x, y) = −
3

x4
+

y

x2
−

[

1

x
+ 2y

]

f

= −
3

x4
+

y

x2
−

[

1

x
+ 2y

] [

1

x2
−

y

x
− y2

]

.

Then

yn+1 = yn + hf(xn.yn) +
h2

2
f ′(xn, yn),

where f ′(x, y) defined above.
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Note we can also compute f ′(x, y) directly, remembering that y is a function of x, i.e.,

f ′(x, y) =
d

dx

[

1

x3
−

y

x
− y2

]

= −
3

x4
−

xy′ − y

x2
− 2yy′ = −

3

x4
+

y

x2
−

[

1

x
+ 2y

]

y′

= −
3

x4
+

y

x2
−

[

1

x
+ 2y

] [

1

x2
−

y

x
− y2

]

.

Definition: The local truncation error for the Taylor series method of order k is defined
by:

y(xn+1)− y(xn)− hTk(xn, y(xn)) =
hk+1

(k + 1)!
y(k+1)(ξn).

The local truncation of Euler’s method is h2y(2)(ξn)/2.

The Taylor algorithm of order k is an example of a one-step method, i.e, the value of yn+1

only depends on one past value (yn). One-step methods have the form

yn+1 = yn + hΦ(xn, yn), n = 0, 1, . . . ,

Analogously to the Taylor series methods, we define the Local Truncation Error of such
methods to be

LTE = y(xn+1)− y(xn)− hΦ(xn, y(xn)).

Then we have the following result giving a bound on the global error.

Theorem 11. If |Φ(x, u) − Φ(x, v)| ≤ L|u− v| for a ≤ x ≤ b, 0 < h < h0 and all u, v and
if the local trucation error is O(hp+1), then for any xn = x0 + nh ∈ [x0, b],

|y(xn)− yn| ≤ C
hp

L
(eL(xn−x0) − 1).

The proof of this result is essentially identical to the proof of the error bound for Euler’s
method.

Although Taylor series methods become increasingly more accurate as k increases, their
major disadvantage is that they require calulation of high derivatives of the function f .


