13. Numerical solution of Ordinary Differential Equations: Background

Consider the initial value problem (IVP) for a first order ordinary differential equation:

$$
d y / d x=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

The following theorem gives sufficient conditions for existence and uniqueness of a solution.
Theorem 10. Let $f(x, y)$ satisfy the following conditions:
(A) $f(x, y)$ is defined and continuous in the strip $x_{0} \leq x \leq b,-\infty<y<\infty$, where x_{0} and b are finite.
(B) There exists a constant L such that for any $x \in\left[x_{0}, b\right]$ and any two numbers y and y^{*}, $\left|f(x, y)-f\left(x, y^{*}\right)\right| \leq L\left|y-y^{*}\right|$.

Then given any number y_{0}, there exists exactly one function $y(x)$ satisfying: (i) $y(x)$ is continuous and differentiable on $\left[x_{0}, b\right]$, (ii) $y^{\prime}(x)=f(x, y(x)), x \in\left[x_{0}, b\right]$, and (iii) $y\left(x_{0}\right)=y_{0}$, i.e., the IVP has a unique solution.

It is also possible to view y as a vector with N components, so that the IVP represents a first order system of odes. One way to treat higher order odes is to reduce them to a first order system by introducing additional variables:

Example: $d^{2} y / d x^{2}=f(x, y, d y / d x)$. Set $z=d y / d x$. Then $d z / d x=f(x, y, z)$ and we obtain the first order system:

$$
\frac{d}{d x}\binom{y}{z}=\binom{z}{f(x, y, z}=\binom{f_{1}(x, y, z)}{f_{2}(x, y, z)} .
$$

13.1. Euler's method. Our numerical schemes will seek approximations to the solution $y(x)$ at a sequence of points x_{i}, i.e., we will approximate $y\left(x_{i}\right)$ by a number y_{i}. We begin by discussing the simplest method, i.e., Euler's method. Set $y_{0}=y\left(x_{0}\right)$ and define

$$
y_{n+1}=y_{n}+h_{n} f\left(x_{n}, y_{n}\right), \quad n=0,1, \ldots,
$$

where $h_{n}=x_{n+1}-x_{n}$.
One motivation of this method is that we have approximated the derivative $(d y / d x)\left(x_{n}\right)$ by the forward difference approximation $\left(y\left(x_{n+1}\right)-y\left(x_{n}\right)\right) /\left(x_{n+1}-x_{n}\right)$ and so:

$$
y\left(x_{n+1}\right) \approx y\left(x_{n}\right)+h_{n} f\left(x_{n}, y\left(x_{n}\right)\right) .
$$

We then define our approximations y_{n} as the value that restores equality, i.e., $y_{n+1}=y_{n}+$ $h_{n} f\left(x_{n}, y_{n}\right)$.

Another motivation for the method is to expand the solution in a Taylor series expansion and neglect higher order terms, i.e.,

$$
\begin{aligned}
& y\left(x_{n}+h_{n}\right)=y\left(x_{n}\right)+h_{n} y^{\prime}\left(x_{n}\right)+O\left(h_{n}^{2}\right) \\
& \quad=y\left(x_{n}\right)+h_{n} f\left(x_{n}, y\left(x_{n}\right)\right)+O\left(h_{n}^{2}\right) \approx y\left(x_{n}\right)+h_{n} f\left(x_{n}, y\left(x_{n}\right)\right) .
\end{aligned}
$$

Example: $y^{\prime}=y \quad y(0)=1$. Then Euler's method, using a constant step size $h_{n}=h$, is: $y_{n+1}=y_{n}+h y_{n}=(1+h) y_{n}$. Hence $y_{0}=1, y_{1}=1+h, y_{2}=(1+h) y_{1}=(1+h)^{2}$, and $y_{n}=(1+h)^{n}$.

We next consider the convergence of Euler's method. Expanding the solution $y(x)$ in a Taylor series, we have

$$
y\left(x_{n+1}\right)=y\left(x_{n}\right)+h_{n} f\left(x_{n}, y\left(x_{n}\right)\right)+\left(h_{n}^{2} / 2\right) y^{\prime \prime}\left(\xi_{n}\right), \quad x_{n} \leq \xi_{n} \leq x_{n+1}
$$

Neglecting any roundoff errors, the approximation given by Euler's method satisfies:

$$
y_{n+1}=y_{n}+h_{n} f\left(x_{n}, y_{n}\right) .
$$

Let $e_{n}=y\left(x_{n}\right)-y_{n}$. Note $e_{0}=0$. Subtracting equations, we get

$$
e_{n+1}=e_{n}+h_{n}\left[f\left(x_{n}, y\left(x_{n}\right)\right)-f\left(x_{n}, y_{n}\right)\right]+\left(h_{n}^{2} / 2\right) y^{\prime \prime}\left(\xi_{n}\right)
$$

Hence

$$
\begin{aligned}
\left|e_{n+1}\right| & \leq\left|e_{n}\right|+h_{n}\left|f\left(x_{n}, y\left(x_{n}\right)\right)-f\left(x_{n}, y_{n}\right)\right|+\left(h_{n}^{2} / 2\right)\left|y^{\prime \prime}\left(\xi_{n}\right)\right| \\
& \leq\left|e_{n}\right|+h_{n} L e_{n}+h_{n}^{2} M_{2} / 2 \leq\left(1+h_{n} L\right)\left|e_{n}\right|+h_{n}^{2} M_{2} / 2
\end{aligned}
$$

where we assume that $\max \left|y^{\prime \prime}(x)\right| \leq M_{2}$. Consider the case when $h_{n}=h$ for all n. Then

$$
\begin{gathered}
\left|e_{1}\right| \leq h^{2} M_{2} / 2, \quad\left|e_{2}\right| \leq(1+h L)\left|e_{1}\right|+h^{2} M_{2} / 2 \leq[1+(1+h L)] h^{2} M_{2} / 2 \\
\left|e_{3}\right| \leq(1+h L)\left|e_{2}\right|+h^{2} M_{2} / 2 \leq\left[1+(1+h L)+(1+h L)^{2}\right] h^{2} M_{2} / 2
\end{gathered}
$$

Using the fact that $\sum_{i=0}^{n-1} r^{i}=\left(1-r^{n}\right) /(1-r)$, we get

$$
\left|e_{n}\right| \leq\left[1+(1+h L)+(1+h L)^{2}+\cdots(1+h L)^{n-1}\right] h^{2} M_{2} / 2 \leq\left[(1+h L)^{n}-1\right] h M_{2} /(2 L)
$$

Observing that $e^{x}=1+x+e^{\xi} x^{2} / 2 \geq 1+x$ for all x, we see that $1+h L \leq e^{h L}$ and hence $(1+h L)^{n} \leq e^{n h L}=e^{\left(x_{n}-x_{0}\right) L}$. Thus, we get the error estimate:

$$
\left|e_{n}\right| \leq \frac{h M_{2}}{2 L}\left[e^{\left(x_{n}-x_{0}\right) L}-1\right]
$$

so the error bound is $O(h)$. This bound is quite pessimistic and not a realistic way to determine a value of h to guarantee a given accuracy. It also requires a bound on $y^{\prime \prime}$.

We now consider what this result says about convergence of Euler's method, and first what we mean by convergence in this context.

Let x be a point in the interval $\left[x_{0}, b\right]$ and let $y(x)$ denote the true solution of the IVP at the point x. For each value of the step size h, we will have an approximation to $y(x)$ that we denote by y_{n}^{h}, where n will be determined by the equation $x-x_{0}=n h$. Thus, as h is decreased, the value of n for which y_{n} denotes the approximation to $y(x)$ will also change. So for convergence, we want:

$$
\lim _{\substack{h \rightarrow 0 \\ n h \infty \\ n=x}} y_{n}^{h}=y(x) .
$$

Example: For $x_{0}=0, x=1 / 2$, and the sequence $h=1 / 4,1 / 8,1 / 16,1 / 32$, we look for the convergence of $y_{2}^{1 / 4}, y_{4}^{1 / 8}, y_{8}^{1 / 16}, y_{16}^{1 / 32}$.

Suppose in the error estimate for Euler's method, we keep $x_{n}=x$ fixed, i.e., we choose n so that $n h=x-x_{0}$ and let $h \rightarrow 0$. Then

$$
\left|y(x)-y_{n}^{h}\right| \leq \frac{h M_{2}}{2 L}\left[e^{\left(x-x_{0}\right) L}-1\right] \Longrightarrow \lim _{\substack{h \rightarrow 0 \\ n \rightarrow \infty \\ n h=x}}\left|y(x)-y_{n}^{h}\right|=0,
$$

so we have converence of the method as $h \rightarrow 0$.
13.2. Taylor series methods. Consider the Taylor series of $y(x)$, the solution of the IVP, about $x=x_{n}$:

$$
y\left(x_{n}+h\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2} y^{(2)}\left(x_{n}\right)+\cdots+\frac{h^{k}}{k!} y^{(k)}\left(x_{n}\right)+\frac{h^{k+1}}{(k+1)!} y^{(k+1)}(\xi)
$$

Now $y^{\prime}(x)=f(x, y(x))$, so

$$
y^{\prime \prime}(x)=f^{\prime}(x, y(x))=\frac{d}{d x} f(x, y(x))=f_{x}(x, y(x))+f_{y}(x, y(x)) \frac{d y}{d x}
$$

In general,

$$
y^{(k)}(x)=f^{(k-1)}(x, y(x))=\frac{d}{d x} f^{(k-2)}(x, y(x))=f_{x}^{(k-2)}(x, y(x))+f_{y}^{(k-2)}(x, y(x)) \frac{d y}{d x} .
$$

Hence, if $y\left(x_{n}\right)$ were known, we could compute an approximation to $y\left(x_{n}+h\right)$ by using the truncated Taylor series:

$$
y\left(x_{n}+h\right) \approx y\left(x_{n}\right)+h f\left(x_{n}, y\left(x_{n}\right)\right)+\frac{h^{2}}{2} f^{\prime}\left(x_{n}, y\left(x_{n}\right)\right)+\cdots+\frac{h^{k}}{k!} f^{(k-1)}\left(x_{n}, y\left(x_{n}\right)\right)
$$

i.e., if we denote by y_{n} the approximation to $y\left(x_{n}\right)$, we can define the Taylor algorithm of order k as the sequence of computations

$$
y_{n+1}=y_{n}+h T_{k}\left(x_{n}, y_{n}\right), \quad n=0,1, \ldots
$$

where

$$
T_{k}(x, y)=f(x, y)+\frac{h}{2} f^{\prime}(x, y)+\cdots+\frac{h^{k-1}}{k!} f^{(k-1)}(x, y)
$$

Note: Euler's method is the Taylor algorithm of order 1.
Example: We wish to solve the IVP $y^{\prime}=1 / x^{3}-y / x-y^{2}, y(1)=2$ by the Taylor algorithm of order 2. Now

$$
f(x, y)=\frac{1}{x^{3}}-\frac{y}{x}-y^{2}
$$

and

$$
\begin{aligned}
f^{\prime}(x, y)=f_{x}(x, y)+f_{y}(x, y) f(x, y)=-\frac{3}{x^{4}}+\frac{y}{x^{2}} & -\left[\frac{1}{x}+2 y\right] f \\
& =-\frac{3}{x^{4}}+\frac{y}{x^{2}}-\left[\frac{1}{x}+2 y\right]\left[\frac{1}{x^{2}}-\frac{y}{x}-y^{2}\right] .
\end{aligned}
$$

Then

$$
y_{n+1}=y_{n}+h f\left(x_{n} \cdot y_{n}\right)+\frac{h^{2}}{2} f^{\prime}\left(x_{n}, y_{n}\right),
$$

where $f^{\prime}(x, y)$ defined above.

Note we can also compute $f^{\prime}(x, y)$ directly, remembering that y is a function of x, i.e.,

$$
\begin{aligned}
f^{\prime}(x, y)=\frac{d}{d x}\left[\frac{1}{x^{3}}-\frac{y}{x}-y^{2}\right]=-\frac{3}{x^{4}}-\frac{x y^{\prime}-y}{x^{2}} & -2 y y^{\prime}
\end{aligned}=-\frac{3}{x^{4}}+\frac{y}{x^{2}}-\left[\frac{1}{x}+2 y\right] y^{\prime} .
$$

Definition: The local truncation error for the Taylor series method of order k is defined by:

$$
y\left(x_{n+1}\right)-y\left(x_{n}\right)-h T_{k}\left(x_{n}, y\left(x_{n}\right)\right)=\frac{h^{k+1}}{(k+1)!} y^{(k+1)}\left(\xi_{n}\right)
$$

The local truncation of Euler's method is $h^{2} y^{(2)}\left(\xi_{n}\right) / 2$.
The Taylor algorithm of order k is an example of a one-step method, i.e, the value of y_{n+1} only depends on one past value $\left(y_{n}\right)$. One-step methods have the form

$$
y_{n+1}=y_{n}+h \Phi\left(x_{n}, y_{n}\right), \quad n=0,1, \ldots,
$$

Analogously to the Taylor series methods, we define the Local Truncation Error of such methods to be

$$
L T E=y\left(x_{n+1}\right)-y\left(x_{n}\right)-h \Phi\left(x_{n}, y\left(x_{n}\right)\right) .
$$

Then we have the following result giving a bound on the global error.
Theorem 11. If $|\Phi(x, u)-\Phi(x, v)| \leq \mathcal{L}|u-v|$ for $a \leq x \leq b, 0<h<h_{0}$ and all u, v and if the local trucation error is $O\left(h^{p+1}\right)$, then for any $x_{n}=x_{0}+n h \in\left[x_{0}, b\right]$,

$$
\left|y\left(x_{n}\right)-y_{n}\right| \leq C \frac{h^{p}}{\mathcal{L}}\left(e^{\mathcal{L}\left(x_{n}-x_{0}\right)}-1\right)
$$

The proof of this result is essentially identical to the proof of the error bound for Euler's method.

Although Taylor series methods become increasingly more accurate as k increases, their major disadvantage is that they require calulation of high derivatives of the function f.

