10.4. Construction of Gaussian quadrature formulas. Using these results, we now return to the problem of finding abscissas x_0, \dots, x_n and weights H_0, \dots, H_n so that

$$\int_{a}^{b} w(x)P(x) dx = \sum_{j=0}^{n} H_{j}P(x_{j})$$

for all polynomials P(x) of degree $\leq 2n + 1$. We make use of the following result, which we have already established.

Lemma 4. For any distinct points x_0, \dots, x_n with $a < x_i < b$, there exist unique constants H_0, \dots, H_n , such that for any polynomial of degree $\leq n$,

$$\int_a^b w(x)P(x)\,dx = \sum_{j=0}^n H_j P(x_j).$$

We note that the constants H_j are given by the formula

$$H_{j} = \int_{a}^{b} w(x) L_{j,n}(x) \, dx, \qquad \text{where} \qquad L_{j,n}(x) = \prod_{\substack{i=0\\i\neq j}}^{n} (x - x_{i}) / (x_{j} - x_{i})$$

Our main result is the following theorem.

Theorem 8. There exist abscissas x_0, \dots, x_n and weights H_0, \dots, H_n such that

$$\int_{a}^{b} w(x)P(x) dx = \sum_{j=0}^{n} H_{j}P(x_{j})$$

for all polynomials P(x) of degree $\leq 2n+1$ if and only if the x_j are the zeroes of Φ_{n+1} .

Proof. For any x_0, \ldots, x_n , let $P_{n+1}(x) = \prod_{j=0}^n (x-x_j)$. Then any polynomial P(x) of degree $\leq 2n + 1$ can be written in the form $P(x) = Q(x)P_{n+1}(x) + R(x)$, where Q and R are polynomials of degree at most n. Then the quadrature formula

(10.1)
$$\int_{a}^{b} w(x)P(x) \, dx = \sum_{j=0}^{n} H_{j}P(x_{j})$$

becomes

(10.2)
$$\int_{a}^{b} w(x)P(x) dx = \int_{a}^{b} w(x)Q(x)P_{n+1}(x) dx + \int_{a}^{b} w(x)R(x) dx$$
$$= \sum_{j=0}^{n} H_{j}Q(x_{j})P_{n+1}(x_{j}) + \sum_{j=0}^{n} H_{j}R(x_{j}) = \sum_{j=0}^{n} H_{j}R(x_{j}),$$

since $P_{n+1}(x_j) = 0$. Hence, the quadrature formula (10.1) will hold for any polynomial P(x) of degree $\leq 2n + 1$ if and only if the quadrature formula (10.2) holds for all Q(x) and R(x) of degree $\leq n$.

Now if the x_j s are the zeroes of $\Phi_{n+1}(x)$, i.e., if $P_{n+1}(x) = \Phi_{n+1}(x)$, then

$$\int_{a}^{b} w(x)Q(x)P_{n+1}(x) \, dx = \int_{a}^{b} w(x)Q(x)\Phi_{n+1}(x) \, dx = 0$$

since $(\Phi_{n+1}, Q) = 0$ for all polynomials Q of degree $\leq n$. By Lemma 4, there exist constants H_0, \ldots, H_n such that

$$\int_{a}^{b} w(x)R(x) \, dx = \sum_{j=0}^{n} H_j R(x_j).$$

Hence, (10.2) holds if the x_j are the zeroes of $\Phi_{n+1}(x)$.

Now suppose (10.2) holds for all Q(x) and R(x) of degree $\leq n$. Then it must hold when $R(x) \equiv 0$, i.e.,

$$\int_{a}^{b} w(x)Q(x)P_{n+1}(x) \, dx = (Q, P_{n+1}) = 0$$

for all Q of degree $\leq n$. By Lemma 3, $P_{n+1}(x) = c\Phi_{n+1}(x)$, $c \neq 0$ and so the x_j s are the zeroes of $\Phi_{n+1}(x)$.

We next derive a formula for the error in this approximation.

Theorem 9. If the x_j and H_j are defined as in Lemma 4 and Theorem 8, and if $f(x) \in V$ satsifies $f^{(2n+2)}$ is continuous in (a,b), then

$$E = \int_{a}^{b} w(x)f(x) \, dx - \sum_{j=0}^{n} H_j f(x_j) = \frac{\gamma_{n+1}}{(2n+2)!} f^{(2n+2)}(\xi)$$

for some $\xi \in (a, b)$.

Proof. Denote by Q(x) the polynomial of degree $\leq 2n + 1$ which solves the Hermite interpolation problem $Q(x_i) = f(x_i), Q'(x_i) = f'(x_i), i = 0, ..., n$. By Theorem 8, the Gauss quadrature formula is exact for Q(x), i.e.,

$$\int_{a}^{b} w(x)Q(x) \, dx = \sum_{j=0}^{n} H_{j}Q(x_{j}) = \sum_{j=0}^{n} H_{j}f(x_{j}).$$

Hence, by the error formula for polynomial interpolation,

$$\begin{split} E &= \int_{a}^{b} w(x) f(x) \, dx - \sum_{j=0}^{n} H_{j} f(x_{j}) = \int_{a}^{b} w(x) [f(x) - Q(x)] \, dx \\ &= \int_{a}^{b} w(x) f[x_{0}, x_{0}, x_{1}, x_{1}, \cdots, x_{n}, x_{n}, x] \prod_{j=0}^{n} (x - x_{j})^{2} \, dx \\ &= \frac{f^{(2n+2)}(\xi_{x})}{(2n+2)!} \int_{a}^{b} w(x) \prod_{j=0}^{n} (x - x_{j})^{2} \, dx \\ &= \frac{f^{(2n+2)}(\xi_{x})}{(2n+2)!} \int_{a}^{b} w(x) \Phi_{n+1}^{2}(x) \, dx, \end{split}$$

44

where we have used the fact that Φ_{n+1} is the unique polynomial of degree n with leading coefficient equal to one, with zeros at x_0, \ldots, x_n .

Remark: It is possible to show that the H_j can be computed without integrations. The result is:

$$H_j = \frac{\gamma_n}{\Phi_n(x_j)\Phi'_{n+1}(x_j)}.$$

10.5. Examples of orthogonal polynomials. We next present standard sets of orthogonal polynomials corresponding to different choices of weight functions w(x) and limits of integration a and b.

(i) a = -1, b = 1, $w(x) \equiv 1$. Legendre polynomials. The corresponding quadrature formula is called the Legendre-Gauss quadrature formula.

(ii) $a = 0, b = \infty, w(x) = e^{-x}$. Laguerre polynomials.

- (iii) $a = -1, b = 1, w(x) = 1/\sqrt{1-x^2}$. Chebyshev polynomials.
- (iv) $a = -\infty$, $b = \infty$, $w(x) = e^{-x^2}$. Hermite polynomials.

There are several advantances to including a weight function w(x). When either or both a and b are infinite, it is convenient to choose w(x) to insure convergence of the integral of w(x)f(x), where f(x) is a polynomial of arbitrary degree (as in (ii) and (iii) above). In singular integrals, e.g., with terms like $1/\sqrt{1-x^2}$, it is convenient to have formulas and expressions for the error that do not depend on such terms.