10.4. Construction of Gaussian quadrature formulas. Using these results, we now return to the problem of finding abscissas x_{0}, \cdots, x_{n} and weights H_{0}, \cdots, H_{n} so that

$$
\int_{a}^{b} w(x) P(x) d x=\sum_{j=0}^{n} H_{j} P\left(x_{j}\right)
$$

for all polynomials $P(x)$ of degree $\leq 2 n+1$. We make use of the following result, which we have already established.

Lemma 4. For any distinct points x_{0}, \cdots, x_{n} with $a<x_{i}<b$, there exist unique constants H_{0}, \cdots, H_{n}, such that for any polynomial of degree $\leq n$,

$$
\int_{a}^{b} w(x) P(x) d x=\sum_{j=0}^{n} H_{j} P\left(x_{j}\right)
$$

We note that the constants H_{j} are given by the formula

$$
H_{j}=\int_{a}^{b} w(x) L_{j, n}(x) d x, \quad \text { where } \quad L_{j, n}(x)=\prod_{\substack{i=0 \\ i \neq j}}^{n}\left(x-x_{i}\right) /\left(x_{j}-x_{i}\right) .
$$

Our main result is the following theorem.
Theorem 8. There exist abscissas x_{0}, \cdots, x_{n} and weights H_{0}, \cdots, H_{n} such that

$$
\int_{a}^{b} w(x) P(x) d x=\sum_{j=0}^{n} H_{j} P\left(x_{j}\right)
$$

for all polynomials $P(x)$ of degree $\leq 2 n+1$ if and only if the x_{j} are the zeroes of Φ_{n+1}.

Proof. For any x_{0}, \ldots, x_{n}, let $P_{n+1}(x)=\prod_{j=0}^{n}\left(x-x_{j}\right)$. Then any polynomial $P(x)$ of degree $\leq 2 n+1$ can be written in the form $P(x)=Q(x) P_{n+1}(x)+R(x)$, where Q and R are polynomials of degree at most n. Then the quadrature formula

$$
\begin{equation*}
\int_{a}^{b} w(x) P(x) d x=\sum_{j=0}^{n} H_{j} P\left(x_{j}\right) \tag{10.1}
\end{equation*}
$$

becomes

$$
\begin{align*}
\int_{a}^{b} w(x) P(x) d x=\int_{a}^{b} w(x) & Q(x) P_{n+1}(x) d x+\int_{a}^{b} w(x) R(x) d x \tag{10.2}\\
= & \sum_{j=0}^{n} H_{j} Q\left(x_{j}\right) P_{n+1}\left(x_{j}\right)+\sum_{j=0}^{n} H_{j} R\left(x_{j}\right)=\sum_{j=0}^{n} H_{j} R\left(x_{j}\right)
\end{align*}
$$

since $P_{n+1}\left(x_{j}\right)=0$. Hence, the quadrature formula (10.1) will hold for any polynomial $P(x)$ of degree $\leq 2 n+1$ if and only if the quadrature formula (10.2) holds for all $Q(x)$ and $R(x)$ of degree $\leq n$.

Now if the x_{j} s are the zeroes of $\Phi_{n+1}(x)$, i.e., if $P_{n+1}(x)=\Phi_{n+1}(x)$, then

$$
\int_{a}^{b} w(x) Q(x) P_{n+1}(x) d x=\int_{a}^{b} w(x) Q(x) \Phi_{n+1}(x) d x=0
$$

since $\left(\Phi_{n+1}, Q\right)=0$ for all polynomials Q of degree $\leq n$. By Lemma 4, there exist constants H_{0}, \ldots, H_{n} such that

$$
\int_{a}^{b} w(x) R(x) d x=\sum_{j=0}^{n} H_{j} R\left(x_{j}\right)
$$

Hence, (10.2) holds if the x_{j} are the zeroes of $\Phi_{n+1}(x)$.
Now suppose (10.2) holds for all $Q(x)$ and $R(x)$ of degree $\leq n$. Then it must hold when $R(x) \equiv 0$, i.e.,

$$
\int_{a}^{b} w(x) Q(x) P_{n+1}(x) d x=\left(Q, P_{n+1}\right)=0
$$

for all Q of degree $\leq n$. By Lemma 3, $P_{n+1}(x)=c \Phi_{n+1}(x), c \neq 0$ and so the x_{j} s are the zeroes of $\Phi_{n+1}(x)$.

We next derive a formula for the error in this approximation.
Theorem 9. If the x_{j} and H_{j} are defined as in Lemma 4 and Theorem 8, and if $f(x) \in V$ satsifies $f^{(2 n+2)}$ is continuous in (a, b), then

$$
E=\int_{a}^{b} w(x) f(x) d x-\sum_{j=0}^{n} H_{j} f\left(x_{j}\right)=\frac{\gamma_{n+1}}{(2 n+2)!} f^{(2 n+2)}(\xi)
$$

for some $\xi \in(a, b)$.
Proof. Denote by $Q(x)$ the polynomial of degree $\leq 2 n+1$ which solves the Hermite interpolation problem $Q\left(x_{i}\right)=f\left(x_{i}\right), Q^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right), i=0, \ldots, n$. By Theorem 8, the Gauss quadrature formula is exact for $Q(x)$, i.e.,

$$
\int_{a}^{b} w(x) Q(x) d x=\sum_{j=0}^{n} H_{j} Q\left(x_{j}\right)=\sum_{j=0}^{n} H_{j} f\left(x_{j}\right)
$$

Hence, by the error formula for polynomial interpolation,

$$
\begin{aligned}
E & =\int_{a}^{b} w(x) f(x) d x-\sum_{j=0}^{n} H_{j} f\left(x_{j}\right)=\int_{a}^{b} w(x)[f(x)-Q(x)] d x \\
& =\int_{a}^{b} w(x) f\left[x_{0}, x_{0}, x_{1}, x_{1}, \cdots, x_{n}, x_{n}, x\right] \prod_{j=0}^{n}\left(x-x_{j}\right)^{2} d x \\
& =\frac{f^{(2 n+2)}\left(\xi_{x}\right)}{(2 n+2)!} \int_{a}^{b} w(x) \prod_{j=0}^{n}\left(x-x_{j}\right)^{2} d x \\
& =\frac{f^{(2 n+2)}\left(\xi_{x}\right)}{(2 n+2)!} \int_{a}^{b} w(x) \Phi_{n+1}^{2}(x) d x
\end{aligned}
$$

where we have used the fact that Φ_{n+1} is the unique polynomial of degree n with leading coefficient equal to one, with zeros at x_{0}, \ldots, x_{n}.

Remark: It is possible to show that the H_{j} can be computed without integrations. The result is:

$$
H_{j}=\frac{\gamma_{n}}{\Phi_{n}\left(x_{j}\right) \Phi_{n+1}^{\prime}\left(x_{j}\right)}
$$

10.5. Examples of orthogonal polynomials. We next present standard sets of orthogonal polynomials corresponding to different choices of weight functions $w(x)$ and limits of integration a and b.
(i) $a=-1, b=1, w(x) \equiv 1$. Legendre polynomials. The corresponding quadrature formula is called the Legendre-Gauss quadrature formula.
(ii) $a=0, b=\infty, w(x)=e^{-x}$. Laguerre polynomials.
(iii) $a=-1, b=1, w(x)=1 / \sqrt{1-x^{2}}$. Chebyshev polynomials.
(iv) $a=-\infty, b=\infty, w(x)=e^{-x^{2}}$. Hermite polynomials.

There are several advantanges to including a weight function $w(x)$. When either or both a and b are infinite, it is convenient to choose $w(x)$ to insure convergence of the integral of $w(x) f(x)$, where $f(x)$ is a polynomial of arbitrary degree (as in (ii) and (iii) above). In singular integrals, e.g., with terms like $1 / \sqrt{1-x^{2}}$, it is convenient to have formulas and expressions for the error that do not depend on such terms.

