10. Gaussian Quadrature

10.1. Quadrature formulas with given abscissas. We have previously seen that one way of obtaining quadrature formulas of the form

$$
\int_{a}^{b} f(x) d x=\sum_{j=0}^{n} H_{j} f\left(x_{j}\right)+E
$$

in the case when the x_{j} are specified is to integrate the polynomial of degree $\leq n$ interpolating f at the points x_{0}, \cdots, x_{n}. Abstractly, we could use the Lagrange form of the interpolating polynomial, $P_{n}(x)=\sum_{j=0}^{n} L_{j, n}(x) f\left(x_{j}\right)$ to obtain the formula

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{n}(x) d x=\sum_{j=0}^{n}\left[\int_{a}^{b} L_{j, n}(x) d x\right] f\left(x_{j}\right)
$$

i.e., $H_{j}=\int_{a}^{b} L_{j, n}(x) d x$. (In our derivations, we used the Newton form of the interpolating polynomial.)

When f is a polynomial of degree $\leq n, f \equiv P_{n}$, so the quadrature formula is exact for all polynomials of degree $\leq n$. Hence, we have determined quadrature formulas of the above form, where the H_{j} are determined by the criteria that the formula be exact for polynomials of as high a degree as possible. We could also obtain these formulas by the method of undetermined coefficients. Since we have $n+1$ weights H_{j}, we would expect exactness for polynomials of degree $\leq n$. Substituting $f(x)=x^{k}, k=0, \cdots, n$, we get the equations:

$$
\int_{a}^{b} x^{k} d x=\sum_{j=0}^{n} H_{j} x_{j}^{k}
$$

This is a set of $n+1$ linear equations for H_{0}, \cdots, H_{n}.

$$
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{0} & x_{1} & \cdots & x_{n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{0}^{n} & x_{1}^{n} & \cdots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
H_{0} \\
H_{1} \\
\cdots \\
H_{n}
\end{array}\right)=\left(\begin{array}{c}
b-a \\
\left(b^{2}-a^{2}\right) / 2 \\
\cdots \\
\left(b^{n+1}-a^{n+1}\right) /(n+1)
\end{array}\right)
$$

This matrix is the transpose of the Vandermonde matrix and hence is nonsingular. So the $H_{j} \mathrm{~s}$ are uniquely determined.

Note that if these equations hold, then if $P_{n}(x)=\sum_{k=0}^{n} c_{k} x^{k}$,

$$
\int_{a}^{b} P_{n}(x) d x=\sum_{k=0}^{n} c_{k} \int_{a}^{b} x^{k} d x=\sum_{k=0}^{n} c_{k} \sum_{j=0}^{n} H_{j} x_{j}^{k}=\sum_{j=0}^{n} H_{j} \sum_{k=0}^{n} c_{k} x_{j}^{k}=\sum_{j=0}^{n} H_{j} P_{n}\left(x_{j}\right),
$$

so the formula is exact for all polynomials of degree $\leq n$.
We can also consider the $x_{j} \mathrm{~s}$ as unknowns and try to determine both the x_{j} and H_{j} to make the resulting quadrature formula exact for as high degree polynomials as possible. Such formulas are called Gaussian quadrature formulas.
10.2. Gaussian quadrature formulas. If we try the method of undetermined coefficents to get such formulas, we obtain the equations

$$
\int_{a}^{b} x^{k} d x=\left(b^{k+1}-a^{k+1}\right) /(k+1)=\sum_{j=0}^{n} H_{j} x_{j}^{k}, \quad k=0,1, \ldots
$$

There are now $2 n+2$ unknowns, so we could take $2 n+2$ equations. However, the equations are now nonlinear, so it is not clear whether this system will have a solution, and even if it does, obtaining the solution is not simple.

We instead use a different approach based on orthogonal polynomials. It is convenient to consider a slightly more general problem, i.e., we introduce a fixed weight function $w(x)$ and look for a formula of the form

$$
\int_{a}^{b} w(x) f(x) d x=\sum_{j=0}^{n} H_{j} f\left(x_{j}\right)+E .
$$

We assume that $w(x)$ is continuous on (a, b) and $w(x)>0$, except at most a set of isolated values. The advantages of this formulation and special choices of $w(x)$ will be discussed later. Obviously, $w(x) \equiv 1$ reduces to the original problem. We also allow a and b to be infinite, as well as finite.
10.3. Orthogonal polynomials. Define $(f, g)=\int_{a}^{b} w(x) f(x) g(x) d x$. One can show that (\cdot, \cdot) is an inner product on the space

$$
V=\left\{f: f \in C^{0}(a, b), \int_{a}^{b} w(x) f^{2}(x) d x<\infty\right\}
$$

That is, we have the properties:

$$
\begin{aligned}
(f, g)=(g, f), \quad & (f+g, h)=(f, h)+(g, h), \quad(\lambda f, g)=\lambda(f, g), \quad \lambda \in \mathbb{R} \\
& (f, f) \geq 0, \quad(f, f)=0 \Longleftrightarrow f=0
\end{aligned}
$$

We can also define the norm of $f,\|f\|=\sqrt{(f, f)}$.
We say f and g are othogonal if $(f, g)=0$. Then a set f_{1}, \cdots, f_{n} is an orthogonal set of functions if $\left(f_{i}, f_{j}\right)=0, i \neq j$. A set f_{1}, \cdots, f_{n} is orthonormal if f_{1}, \cdots, f_{n} is orthogonal and $\left(f_{i}, f_{i}\right)=1, i=1, \ldots, n$.

In the following discussion, we let $\Phi_{0}(x), \Phi_{1}(x), \cdots$ be a set of polynomials satisfying (i) $\Phi_{j}(x)$ is of degree j and (ii) $\left(\Phi_{j}, \Phi_{k}\right)=0, j \neq k$ (i.e., we have a set of orthogonal polynomials).

Properties of orthogonal polynomials:
Lemma 3. A non-zero polynomial $P(x)$ of degree at most k is orthogonal to every polynomial of degree $<k$ if and only if $P(x)=c \Phi_{k}(x)$ for some non-zero constant c.

Proof. Let $P(x)=c \Phi_{k}(x)$. We first show that $(P, Q)=0$ for any polynomial $Q(x)$ of degree $<k$. To do so, we observe that any set of $j+1$ polynomials of exact degrees $0,1, \ldots, j$ is a basis for the set of all polynomials of degree $\leq j$. Hence, any polynomial $Q(x)$ of degree
$<k$ is a linear combination of $\Phi_{0}, \Phi_{1}, \ldots, \Phi_{k-1}$. Since Φ_{k} is orthogonal to each of these by assumption, it is orthogonal to Q and hence $(P, Q)=0$.

Now assume $P(x)$ of degree at most k is orthogonal to every polynomial of degree $<k$. Then for any constant c, so is $P(x)-c \Phi_{k}(x)$. Choose c so that the coefficient of x^{k} in $P(x)-c \Phi_{k}(x)$ is equal to zero. For this value of $c, R(x)=P(x)-c \Phi_{k}(x)$ is of degree $<k$. Hence, $R(x)$ is orthogonal to itself, so $R(x) \equiv 0$, i.e., $P(x)=c \Phi_{k}(x)$.

Corollary: Orthogonal polynomials are unique to within multiplication by non-zero constants. Hence, we still have a set of arbitrary constants to specifiy to completely determine a set of orthogonal polynomials. We use these constants to normalize the polynomials in some convenient way. Two standard possibilities: (i) make the leading coefficient (of x^{k}) in $\Phi_{k}(x)$ equal to one or (ii) make $\left\|\Phi_{k}\right\|=1$, i.e., make the set orthonormal.

Remark: We are assuming a fixed inner product. If the weight function $w(x)$ or the limits of integration a or b are changed, then we have a new inner product and hence a new set of orthogonal polynomials.

Using Lemma 3, we now prove a key result for the derivation of the quadrature formula.
Theorem 6. $\Phi_{k}(x)$ has k real distinct zeroes lying in (a, b).

Proof. Let a_{1}, \ldots, a_{k} be the roots of $\Phi_{k}(x)$. As x varies from a to b, let $\Phi_{k}(x)$ change sign at the points b_{1}, \ldots, b_{l}. Obviously, $\Phi_{k}\left(b_{j}\right)=0$ and so the b_{j} are a subset of the $a_{j}(l \leq k)$. Let $P(x)=\prod_{j=1}^{l}\left(x-b_{j}\right)$ if $l \geq 1, P(x) \equiv 1$ if $l=0$. Now $P(x)$ also changes sign at $b_{1}, \ldots b_{l}$ since one factor changes sign as x crosses b_{j}. Hence, $P(x) \Phi_{k}(x)$ is either always ≥ 0 or always ≤ 0. Since $w(x)>0$,

$$
\left(P, \Phi_{k}\right)=\int_{a}^{b} w(x) P(x) \Phi_{k}(x) d x \neq 0
$$

By Lemma 3, the degree of $P(x)$ is at least k, i.e., $l=k$ and $a_{1}, \cdots, a_{k}=b_{1}, \cdots, b_{k}$ are distinct real zeroes of $\Phi_{k}(x)$.

We next present an algorithm for the construction of a set of orthogonal polynomials (for a given inner product).
Theorem 7. Lanczo's Orthogonalization theorem Let

$$
\Phi_{0}=1, \quad \Phi_{1}=x-\alpha_{1}, \quad \Phi_{k}=x \Phi_{k-1}-\alpha_{k} \Phi_{k-1}-\beta_{k} \Phi_{k-2}, \quad k=2,3, \cdots
$$

where

$$
\begin{gathered}
\gamma_{k}=\left(\Phi_{k}, \Phi_{k}\right), \quad k=0,1, \ldots, \quad \alpha_{k}=\left(x \Phi_{k-1}, \Phi_{k-1}\right) / \gamma_{k-1}, \quad k=1,2, \ldots, \\
\beta_{k}=\left(x \Phi_{k-1}, \Phi_{k-2}\right) / \gamma_{k-2}, \quad k=2,3, \ldots
\end{gathered}
$$

Then $\Phi_{0}, \Phi_{1}, \ldots$ are an orthogonal set of polynomials.
Proof. We need to prove the following: For $k=0,1, \cdots$, (i) Φ_{k} is a polynomial of degree k, (ii) $\gamma_{k} \neq 0$, since we must divide by it, and (iii) $\left(\Phi_{k}, \Phi_{j}\right)=0$ for $j<k$. Now (ii) follows
from (i), since if Φ_{k} is a polynomial of degree k, it cannot be zero and hence $\gamma_{k} \neq 0$. We now prove (i) and (iii) by induction.
$k=0$. Φ_{0} is of degree zero. Since there is no $j<0$, (iii) is not applicable. $\gamma_{0}=(1,1)$.
$k=1 . \Phi_{1}$ is of degree one. $\alpha_{1}=(x, 1) /(1,1)$ and

$$
\left(\Phi_{1}, \Phi_{0}\right)=\left(x-\alpha_{1}, 1\right)=(x, 1)-\alpha_{1}(1,1)=0 .
$$

Now assume (i), (ii), and (iii) hold for all Φ_{l} with $l<k$. We will show that (i) and (iii) hold for $l=k$. Now $\Phi_{k}=x \Phi_{k-1}-\alpha_{k} \Phi_{k-1}-\beta_{k} \Phi_{k-2}$. Since Φ_{k-1} and Φ_{k-2} are of degrees $k-1$ and $k-2$, respectively, $x \Phi_{k-1}$ is of degree k and hence Φ_{k} is of degree k. This establishes (i). The proof of (iii) requires three cases $(j=k-1, j=k-2, j<k-2)$. Now

$$
\left(\Phi_{k}, \Phi_{k-1}\right)=\left(x \Phi_{k-1}, \Phi_{k-1}\right)-\alpha_{k}\left(\Phi_{k-1}, \Phi_{k-1}\right)-\beta_{k}\left(\Phi_{k-2}, \Phi_{k-1}\right)=0
$$

using the definition of α_{k} and the fact that (iii) holds for $l=k-1$, i.e., $\left(\Phi_{k-2}, \Phi_{k-1}\right)=0$. When $j=k-2$,

$$
\left(\Phi_{k}, \Phi_{k-2}\right)=\left(x \Phi_{k-1}, \Phi_{k-2}\right)-\alpha_{k}\left(\Phi_{k-1}, \Phi_{k-2}\right)-\beta_{k}\left(\Phi_{k-2}, \Phi_{k-2}\right)=0
$$

using the definition of β_{k} and the fact that (iii) holds for $l=k-1$, i.e., $\left(\Phi_{k-2}, \Phi_{k-1}\right)=0$. Finally, when $j<k-2$,

$$
\begin{aligned}
\left(\Phi_{k}, \Phi_{j}\right) & =\left(x \Phi_{k-1}, \Phi_{j}\right)-\alpha_{k}\left(\Phi_{k-1}, \Phi_{j}\right)-\beta_{k}\left(\Phi_{k-2}, \Phi_{j}\right) \\
& =\left(\Phi_{k-1}, x \Phi_{j}\right)-\alpha_{k}\left(\Phi_{k-1}, \Phi_{j}\right)-\beta_{k}\left(\Phi_{k-2}, \Phi_{j}\right)
\end{aligned}
$$

Since $x \Phi_{j}$ is of degree $<k-1$, we again use the fact that (iii) holds for $k-1$ and $k-2$ to conclude that all terms on the right hand side are equal to zero.

Corollary 2: The leading term of Φ_{k} has coefficient one.
Corollary 3: $\beta_{k}=\gamma_{k-1} / \gamma_{k-2}$.

$$
\begin{aligned}
\gamma_{k-2} \beta_{k}=\left(x \Phi_{k-1}, \Phi_{k-2}\right)= & \left(\Phi_{k-1}, x \Phi_{k-2}\right) \\
& =\left(\Phi_{k-1}, \Phi_{k-1}\right)+\alpha_{k-1}\left(\Phi_{k-1}, \Phi_{k-2}\right)+\beta_{k-1}\left(\Phi_{k-1}, \Phi_{k-3}\right)=\gamma_{k-1} .
\end{aligned}
$$

Corollary 4: $\gamma_{k}=\left(x^{k}, \Phi_{k}\right)$.

$$
\gamma_{k}=\left(\Phi_{k}, \Phi_{k}\right)=\left(x^{k}+P(x), \Phi_{k}\right)=\left(x^{k}, \Phi_{k}\right),
$$

using Lemma 3 and the fact that $P(x)$ is a polynomial of degree at most $k-1$.
Corollary 5: If $\Phi_{k-1}(x)=x^{k-1}+c_{k-1} x^{k-2}+\cdots+$, then $\alpha_{k}=\left(x^{k}, \Phi_{k-1}\right) / \gamma_{k-1}+c_{k-1}$.

$$
\begin{aligned}
\alpha_{k} & =\left(x \Phi_{k-1}, \Phi_{k-1}\right) / \gamma_{k-1}=\left(x\left[x^{k-1}+c_{k-1} x^{k-2}+\cdots+\right], \Phi_{k-1}\right) / \gamma_{k-1} \\
& =\left(x^{k}, \Phi_{k-1}\right) / \gamma_{k-1}+c_{k-1}\left(x^{k-1}, \Phi_{k-1}\right) / \gamma_{k-1}+0=\left(x^{k}, \Phi_{k-1}\right) / \gamma_{k-1}+c_{k-1} .
\end{aligned}
$$

Remark: Corollaries 3, 4, and provide the most convenient formulas for constructing the orthogonal polynomials.

